Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Malar J ; 23(1): 78, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491345

ABSTRACT

BACKGROUND: Vegetation health (VH) is a powerful characteristic for forecasting malaria incidence in regions where the disease is prevalent. This study aims to determine how vegetation health affects the prevalence of malaria and create seasonal weather forecasts using NOAA/AVHRR environmental satellite data that can be substituted for malaria epidemic forecasts. METHODS: Weekly advanced very high-resolution radiometer (AVHRR) data were retrieved from the NOAA satellite website from 2009 to 2021. The monthly number of malaria cases was collected from the Ministry of Health of Benin from 2009 to 2021 and matched with AVHRR data. Pearson correlation was calculated to investigate the impact of vegetation health on malaria transmission. Ordinary least squares (OLS), support vector machine (SVM) and principal component regression (PCR) were applied to forecast the monthly number of cases of malaria in Northern Benin. A random sample of proposed models was used to assess accuracy and bias. RESULTS: Estimates place the annual percentage rise in malaria cases at 9.07% over 2009-2021 period. Moisture (VCI) for weeks 19-21 predicts 75% of the number of malaria cases in the month of the start of high mosquito activities. Soil temperature (TCI) and vegetation health index (VHI) predicted one month earlier than the start of mosquito activities through transmission, 78% of monthly malaria incidence. CONCLUSIONS: SVM model D is more effective than OLS model A in the prediction of malaria incidence in Northern Benin. These models are a very useful tool for stakeholders looking to lessen the impact of malaria in Benin.


Subject(s)
Malaria , Mosquito Vectors , Animals , Humans , Benin/epidemiology , Malaria/epidemiology , Weather , Africa, Western/epidemiology
2.
bioRxiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38352547

ABSTRACT

The primary control methods for the African malaria mosquito, Anopheles gambiae, are based on insecticidal interventions. Emerging resistance to these compounds is therefore of major concern to malaria control programmes. The organophosphate, pirimiphos-methyl, is a relatively new chemical in the vector control armoury but is now widely used in indoor residual spray campaigns. Whilst generally effective, phenotypic resistance has developed in some areas in malaria vectors. Here, we used a population genomic approach to identify novel mechanisms of resistance to pirimiphos-methyl in Anopheles gambiae s.l mosquitoes. In multiple populations, we found large and repeated signals of selection at a locus containing a cluster of detoxification enzymes, some of whose orthologs are known to confer resistance to organophosphates in Culex pipiens. Close examination revealed a pair of alpha-esterases, Coeae1f and Coeae2f, and a complex and diverse pattern of haplotypes under selection in An. gambiae, An. coluzzii and An. arabiensis. As in Cx. pipiens, copy number variation seems to play a role in the evolution of insecticide resistance at this locus. We used diplotype clustering to examine whether these signals arise from parallel evolution or adaptive introgression. Using whole-genome sequenced phenotyped samples, we found that in West Africa, a copy number variant in Anopheles gambiae is associated with resistance to pirimiphos-methyl. Overall, we demonstrate a striking example of contemporary parallel evolution which has important implications for malaria control programmes.

3.
BMC Public Health ; 24(1): 450, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38347490

ABSTRACT

BACKGROUND: Malaria is one of the major vector-borne diseases most sensitive to climatic change in West Africa. The prevention and reduction of malaria are very difficult in Benin due to poverty, economic insatiability and the non control of environmental determinants. This study aims to develop an intelligent outbreak malaria early warning model driven by monthly time series climatic variables in the northern part of Benin. METHODS: Climate data from nine rain gauge stations and malaria incidence data from 2009 to 2021 were extracted from the National Meteorological Agency (METEO) and the Ministry of Health of Benin, respectively. Projected relative humidity and temperature were obtained from the coordinated regional downscaling experiment (CORDEX) simulations of the Rossby Centre Regional Atmospheric regional climate model (RCA4). A structural equation model was employed to determine the effects of climatic variables on malaria incidence. We developed an intelligent malaria early warning model to predict the prevalence of malaria using machine learning by applying three machine learning algorithms, including linear regression (LiR), support vector machine (SVM), and negative binomial regression (NBiR). RESULTS: Two ecological factors such as factor 1 (related to average mean relative humidity, average maximum relative humidity, and average maximal temperature) and factor 2 (related to average minimal temperature) affect the incidence of malaria. Support vector machine regression is the best-performing algorithm, predicting 82% of malaria incidence in the northern part of Benin. The projection reveals an increase in malaria incidence under RCP4.5 and RCP8.5 over the studied period. CONCLUSION: These results reveal that the northern part of Benin is at high risk of malaria, and specific malaria control programs are urged to reduce the risk of malaria.


Subject(s)
Malaria , Humans , Benin/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Temperature , Incidence , Africa, Western/epidemiology , Disease Outbreaks/prevention & control
4.
Nat Commun ; 14(1): 4946, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587104

ABSTRACT

Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of malaria control, but the genetics of resistance are only partially understood. We performed a large scale multi-country genome-wide association study of resistance to two widely used insecticides: deltamethrin and pirimiphos-methyl, using sequencing data from An. gambiae and An. coluzzii from ten locations in West Africa. Resistance was highly multi-genic, multi-allelic and variable between populations. While the strongest and most consistent association with deltamethrin resistance came from Cyp6aa1, this was based on several independent copy number variants (CNVs) in An. coluzzii, and on a non-CNV haplotype in An. gambiae. For pirimiphos-methyl, signals included Ace1, cytochrome P450s, glutathione S-transferases and the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes showed evidence of cross-resistance to both insecticides. These locally-varying, multi-allelic patterns highlight the challenges involved in genomic monitoring of resistance, and may form the basis for improved surveillance methods.


Subject(s)
Anopheles , Insecticides , Pyrethrins , Animals , Anopheles/genetics , Insecticides/pharmacology , Genome-Wide Association Study , Organophosphates/pharmacology , Pyrethrins/pharmacology
5.
bioRxiv ; 2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36712022

ABSTRACT

Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of the most widespread tools currently used to control malaria. The genetic underpinnings of resistance are still only partially understood, with much of the variance in resistance phenotype left unexplained. We performed a multi-country large scale genome-wide association study of resistance to two insecticides widely used in malaria control: deltamethrin and pirimiphos-methyl. Using a bioassay methodology designed to maximise the phenotypic difference between resistant and susceptible samples, we sequenced 969 phenotyped female An. gambiae and An. coluzzii from ten locations across four countries in West Africa (Benin, Côte d'Ivoire, Ghana and Togo), identifying single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) segregating in the populations. The patterns of resistance association were highly multiallelic and variable between populations, with different genomic regions contributing to resistance, as well as different mutations within a given region. While the strongest and most consistent association with deltamethrin resistance came from the region around Cyp6aa1 , this resistance was based on a combination of several independent CNVs in An. coluzzii , and on a non-CNV bearing haplotype in An. gambiae . Further signals involved a range of cytochrome P450, mitochondrial, and immunity genes. Similarly, for pirimiphos-methyl, while the strongest signal came from the region of Ace1 , more widespread signals included cytochrome P450s, glutathione S-transferases, and a subunit of the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes were associated with resistance to both insecticide classes, suggesting possible cross-resistance mechanisms. These locally-varying, multigenic and multiallelic patterns highlight the challenges involved in genomic monitoring and surveillance of resistance, and form the basis for improvement of methods used to detect and predict resistance. Based on simulations of resistance variants, we recommend that yet larger scale studies, exceeding 500 phenotyped samples per population, are required to better identify associated genomic regions.

6.
Malar J ; 21(1): 353, 2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36437444

ABSTRACT

BACKGROUND: This study was designed to provide insecticide resistance data for decision-making in terms of resistance management plans in Togo. METHODS: The susceptibility status of Anopheles gambiae sensu lato (s.l.) to insecticides used in public health was assessed using the WHO tube test protocol. Pyrethroid resistance intensity bioassays were performed following the CDC bottle test protocol. The activity of detoxification enzymes was tested using the synergists piperonyl butoxide, S.S.S-tributlyphosphorotrithioate and ethacrinic acid. Species-specific identification of An. gambiae s.l. and kdr mutation genotyping were performed using PCR techniques. RESULTS: Local populations of An. gambiae s.l. showed full susceptibility to pirimiphos methyl at Lomé, Kovié, Anié, and Kpèlè Toutou. At Baguida, mortality was 90%, indicating possible resistance to pirimiphos methyl. Resistance was recorded to DDT, bendiocarb, and propoxur at all sites. A high intensity of pyrethroid resistance was recorded and the detoxification enzymes contributing to resistance were oxidases, esterases, and glutathione-s-transferases based on the synergist tests. Anopheles gambiae sensu stricto (s.s.) and Anopheles coluzzii were the main species identified. High kdr L1014F and low kdr L1014S allele frequencies were detected at all localities. CONCLUSION: This study suggests the need to reinforce current insecticide-based malaria control interventions (IRS and LLINs) with complementary tools.


Subject(s)
Anopheles , Insecticides , Pyrethrins , Animals , Anopheles/genetics , Insecticide Resistance/genetics , Pyrethrins/pharmacology , Togo , Insecticides/pharmacology
7.
Animals (Basel) ; 12(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36359165

ABSTRACT

"The Dahomey Gap" is a human-derived mostly savannah region that separates the Guineo-Congolian rainforest block into two major units: the Upper Guinean and the Lower Guinean Forest blocks. Several forest patches are distributed throughout this savannah-dominated habitat. The mammal communities in the Dahomey Gap region have been poorly studied. In this paper we analyse the species richness and abundance of, as well as conservation implications for, medium and large mammals (especially ungulates) inhabiting a complex of flooded forests near the Mono river in south-eastern Togo. We use several field methods to describe the species richness of mammals in this area, including camera-trapping, recce transects, Kilometric Index of Abundance (KIA) estimates, examination of hunters' catches and face-to-face hunter interviews. Overall, we directly recorded 19 species that coexist in these forests. Based on interviews, nine other species were confirmed as present in the study area. Only five species were common: Cephalophus rufilatus, Tragelaphus scriptus, Chlorocebus aethiops, Atilax paludinosus and Herpestes ichneumon. The area still contains various threatened species such as Tragelaphus spekii and Hippopotamus amphibius. We stress that to ensure the protection of the Dahomey Gap mammals, it is important to seriously consider protecting not only the forest patches but also the surroundings, mainly savannah landscapes.

8.
Heliyon ; 8(6): e09770, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35785235

ABSTRACT

According to WHO recommendations, the deployment of the next generation of Long-Lasting Insecticidal Nets (LLINs) for malaria vector control requires appropriate investigations on the insecticide resistance profile of the vector. Most of the next generation of LLINs are impregnated with a combination of pyrethroid insecticides and piperonyl butoxide (PBO), a synergist with an additional impact on the increase in the mortality rate of Anopheles gambiae s.l. (Diptera: Culicidae). Kolokopé is a cotton-growing area in the central region of Togo characterized by an intensive use of agricultural pesticides and insecticides where there is a phase II experimental hut station. For the characterization of the site, WHO susceptibility tests using diagnostic doses of ten insecticides, PBO synergist assays and intensity assays of three pyrethroids (5x and 10x) were conducted on adult female mosquitoes obtained from larvae collected around the site. Anopheles gambiae s.l. from Kolokopé showed high resistance to pyrethroids and DDT, but to a lesser extent to carbamates and organophosphates. Likewise, high intensity of resistance to pyrethroid was observed with less than 40% mortality at 10x deltamethrin, 52 and 29% mortality at 10x permethrin and 10x alphacypermethrin, respectively. Also, PBO treatment resulted in increased mortality which was higher than the mortality rate at 10x doses of pyrethroids. The high pyrethroid intensity resistance recorded at Kolokopé could be mainly due to the selection pressure on An. gambiae s.l. caused by the excessive use of insecticide in agriculture. These results can be used to assess the next generation of LLINs either in experimental hut or at a community trial.

9.
BJOG ; 129(9): 1546-1557, 2022 08.
Article in English | MEDLINE | ID: mdl-35106907

ABSTRACT

OBJECTIVE: Antenatal (ANC) and postnatal care (PNC) are logical entry points for prevention and treatment of pregnancy-related illness and to reduce perinatal mortality. We developed signal functions and assessed availability of the essential components of care. DESIGN: Cross-sectional survey. SETTING: Afghanistan, Chad, Ghana, Tanzania, Togo. SAMPLE: Three hundred and twenty-one healthcare facilities. METHODS: Fifteen essential components or signal functions of ANC and PNC were identified. Healthcare facility assessment for availability of each component, human resources, equipment, drugs and consumables required to provide each component. MAIN OUTCOME MEASURE: Availability of ANC PNC components. RESULTS: Across all countries, healthcare providers are available (median number per facility: 8; interquartile range [IQR] 3-17) with a ratio of 3:1 for secondary versus primary care. Significantly more women attend for ANC than PNC (1668 versus 300 per facility/year). None of the healthcare facilities was able to provide all 15 essential components of ANC and PNC. The majority (>75%) could provide five components: diagnosis and management of syphilis, vaccination to prevent tetanus, BMI assessment, gestational diabetes screening, monitoring newborn growth. In Sub-Saharan countries, interventions for malaria and HIV (including prevention of mother to child transmission [PMTCT]) were available in 11.7-86.5% of facilities. Prevention and management of TB; assessment of pre- or post-term birth, fetal wellbeing, detection of multiple pregnancy, abnormal lie and presentation; screening and support for mental health and domestic abuse were provided in <25% of facilities. CONCLUSIONS: Essential components of ANC and PNC are not in place. Focused attention on content is required if perinatal mortality and maternal morbidity during and after pregnancy are to be reduced. TWEETABLE ABSTRACT: ANC and PNC are essential care bundles. We identified 15 core components. These are not in place in the majority of LMIC settings.


Subject(s)
Prenatal Care , Syphilis , Cross-Sectional Studies , Female , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical , Postnatal Care , Pregnancy
10.
Plants (Basel) ; 10(3)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799877

ABSTRACT

In urban and peri-urban areas in West Africa, the cabbage Brassica oleracea L. (Brassicaceae) is protected using repeated high doses of synthetic insecticides. After a brief description of available IPM components, this paper presents a literature review focused on the botanical extracts that have been experimented with at the laboratory or in the field in West Africa against major cabbage pests. The literature reviewed mentions 19 plant species from 12 families used for cabbage protection in the subregion. The species most used are Azadirachta indica, Capsicum frutescens, Ocimum gratissimum and Ricinus communis. An overview of the world literature showed that a total of 13 plant species belonging to 8 families used to control cabbage pests are reported from the rest of Africa, and 140 plant species belonging to 43 families from the rest of the world. The most commonly used and tested plant species against insect pests in the three geographical areas considered is A. indica.

11.
J Med Entomol ; 58(2): 730-738, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33043968

ABSTRACT

An effective control of malaria vectors requires an extensive knowledge of mechanisms underlying the resistance-phenotypes developed by these vectors against insecticides. We investigated Anopheles gambiae mosquitoes from Benin and Togo for their intensity of insecticide resistance and we discussed the involvement of genotyped mechanisms in the resistance-phenotypes observed. Three- to five-day-old adult mosquitoes emerged from field and laboratory An. gambiae larvae were assayed using WHO tube intensity tests against various doses of deltamethrin: 1× (0.05%); 2× (0.1%); 5× (0.25%); 7.5× (0.375%) and those of pirimiphos-methyl: 0.5× (0.125%); 1× (0.25%). Members of An. gambiae complex were screened in field populations using polymerase chain reaction (PCR) assays. The presence of kdrR(1014F/1014S) and ace-1R(119S) mutations was also investigated using TaqMan and PCR-RFLP techniques, respectively. Anopheles gambiae from field were very resistant to deltamethrin, whereas KisKdr and AcerKdrKis strains displayed 100% mortality rates at 2× the diagnostic dose. In contrast, the field mosquitoes displayed a low resistance-intensity against 1× the diagnostic dose of pirimiphos-methyl, whereas AcerKis and AcerKdrKis strains showed susceptibility at 0.5× the diagnostic dose. Anopheles gambiae s.s., Anopheles coluzzii, and Anopheles arabiensis were identified. Allelic frequencies of kdrR (1014F) and ace-1R (119S) mutations in the field populations varied from 0.65 to 1 and 0 to 0.84, respectively. The field An. gambiae displayed high-resistance levels against deltamethrin and pirimiphos-methyl when compared with those of the laboratory An. gambiae-resistant strains. These results exhibit the complexity of underlying insecticide resistance mechanisms in these field malaria vectors.


Subject(s)
Anopheles , Insecticide Resistance/genetics , Animals , Anopheles/drug effects , Anopheles/genetics , Disease Vectors , Gene Frequency , Genes, Insect , Insecticides/pharmacology , Malaria/transmission , Mosquito Control/methods , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Mutation , Nitriles/pharmacology , Organothiophosphorus Compounds/pharmacology , Pyrethrins/pharmacology , Togo
12.
J Med Entomol ; 57(4): 1168-1175, 2020 07 04.
Article in English | MEDLINE | ID: mdl-32112104

ABSTRACT

Vector control strategies recommended by the World Health Organization are threatened by resistance of Anopheles mosquitoes to insecticides. Information on the distribution of resistant genotypes of malaria vectors is increasingly needed to address the problem. Ten years of published and unpublished data on malaria vector susceptibility/resistance and resistance genes have been collected across Togo. Relationships between the spatial distribution of resistance status and environmental, socio-economic, and landscape features were tested using randomization tests, and calculating Spearman rank and Pearson correlation coefficients between mosquito mortality and different gridded values. Anopheles gambiae sensu lato was resistant to DDT, pyrethroids, and the majority of carbamates and organophosphates. Three sibling species were found (i.e., An. gambiae, Anopheles coluzzii, and Anopheles arabiensis) with four resistance genes, including kdr (L1014F, L1014S, and N1575Y) and ace1 (G119S). The most frequent resistance gene was L1014F. Overall, no association was found between the susceptibility/resistance status and environmental features, suggesting that evolution of resistance may be most closely related to extreme selection from local insecticide use. Nevertheless, further research is necessary for firm conclusions about this lack of association, and the potential role of landscape characteristics such as presence of crops and percentage of tree cover.


Subject(s)
Anopheles/genetics , Environment , Insecticide Resistance/genetics , Socioeconomic Factors , Animals , Anopheles/classification , Anopheles/drug effects , Insecticides/pharmacology , Species Specificity , Togo
13.
Malar J ; 18(1): 177, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31118032

ABSTRACT

BACKGROUND: Malaria, one of the world's greatest public health challenges, is an endemic disease with stable transmission in Togo. Combating malaria requires an effective vector control. This study provides temporal data on insecticide resistance status in the major malaria vector Anopheles gambiae sensu lato (s.l.) from Togo. METHODS: Two to 5 days old females of An. gambiae s.l., originating from three localities (Baguida, Kovié, Kolokopé) were subjected to insecticide-impregnated papers during 3 years (2012, 2013, 2016) as follows: organochlorides (4% DDT), pyrethroids (0.05% deltamethrin, 0.75% permethrin, 0.05% lambdacyhalothrin), carbamates (0.4% bendiocarb and 0.1% propoxur), and organophosphates (5% malathion, 0.4% chlorpyrifos methyl, 1% fenitrothion) following the WHO standard protocol. Dead and surviving mosquitoes were stored separately in Eppendorf tubes containing silica gel for DNA extraction, species identification, and kdr and ace-1 genotyping. RESULTS: Knockdown times (KDT50 and KDT95) were high in An. gambiae s.l. The lowest KDTs were recorded at Baguida in 2013 for deltamethrin (KDT50 = 24.7, CI [22.4-27.12] and KDT95 = 90.78, CI [76.35-113.49]). No KDTs were recorded for DDT and in some instances for permethrin. In general, An. gambiae s.l. was resistant to most of the four classes of insecticides during the survey periods regardless of locality and year, except to chlorpyrifos methyl. In some instances, mosquitoes were fully susceptible to fenitrothion (Kolokopé: 100% and Kovié: 98.05%, CI [95.82-100.26]) and malathion (100% at both Kolokopé and Kovié) in 2013, and malathion only (Kolokopé; 100%) in 2016. Anopheles coluzzii, An. gambiae and Anopheles arabiensis were the three sibling species identified at the three localities with some hybrids at Baguida (2013), and Kovié (2012 and 2016), respectively. Anopheles gambiae was relatively dominant (61.6%). The kdr 1014F allele frequency was > 0.9 in most of the cases, except at Kolokopé (f (1014F) = 0.63, CI [0.55-0.71]) in 2013. The kdr 1014S allele frequency was below 0.02. The highest ace-1 frequencies were identified in An. gambiae at Baguida (2012: 0.52, CI [0.34-0.69] and 2013: 0.66, CI [0.46-0.86]). CONCLUSION: The resistance status is worrying in Togo and should be considered in future malaria vector resistance management programmes by decision-makers.


Subject(s)
Anopheles/genetics , Insecticide Resistance/genetics , Insecticides , Malaria/prevention & control , Mosquito Control/methods , Animals , Disease Vectors , Female , Gene Frequency , Genes, Insect , Insecticide-Treated Bednets , Malaria/epidemiology , Mosquito Vectors/genetics , Organophosphates , Pyrethrins , Surveys and Questionnaires , Togo/epidemiology
14.
J Med Entomol ; 56(4): 1159-1164, 2019 06 27.
Article in English | MEDLINE | ID: mdl-30924857

ABSTRACT

A survey of susceptibility to DDT, deltamethrin, bendiocarb, and chlorpyrifos-methyl was conducted in five localities in 2011 in Togo, West Africa, to assess the insecticide resistance status of Anopheles gambiae s.l. (Diptera: Culicidae). Female populations of An. gambaie s.l. emerged from collected larvae (F0) were exposed to insecticide-impregnated papers using World Health Organization test kits for adult mosquitoes; the susceptible reference strain Kisumu was used as a control. Resistance to DDT and deltamethrin was observed within the mosquito populations tested. Anopheles gambiae s.s. and Anopheles coluzzii represented the only species recorded in the study sites. The frequency of knockdown resistance (kdr L1014F) mutation determined using polymerase chain reaction diagnostic tests was lower in An. gambiae than in An. coluzzii in all of the localities except Kolokopé. Further investigations of An. gambiae s.l. resistance are needed in Togo to help the National Malaria Control Programme in vector control decision making and implementation of resistance management strategy.


Subject(s)
Anopheles , Insecticide Resistance , Mosquito Vectors , Animals , Female , Malaria/transmission , Mutation , Togo
15.
PLoS One ; 13(7): e0192492, 2018.
Article in English | MEDLINE | ID: mdl-29995894

ABSTRACT

LLINs containing an insecticide plus the synergist, piperonyl butoxide (PBO) have been designed for increased efficacy against pyrethroid-resistant malaria vectors. In this study, two LLINs with PBO, PermaNet® 3.0 and Olyset® Plus, and a pyrethroid-only LLIN, Yorkool®, were evaluated in experimental huts against a free-flying, wild population of Anopheles gambiae s.l. in Kolokopé, a cotton cultivated area of Togo. WHO susceptibility tube tests and subsequent molecular assays determine the An. gambiae s.l. populations to be resistant to pyrethroids and DDT with both target site kdr and metabolic resistance mechanisms involved in the resistance observed. Anopheles gambiae s.s. and An. coluzzi were present in sympatry though the kdr (L1014F) mutation was observed at a higher frequency in An. gambiae s.s. The experimental hut results showed that both PermaNet® 3.0 and Olyset® Plus nets induced similar levels of deterrence, exophily, and reduced blood feeding rate against wild An. gambiae s.l. in contrast to the pyrethroid only LLIN, Yorkool®. The proportion of wild An. gambiae s.l. killed by unwashed PermaNet® 3.0 was significantly higher than unwashed Olyset® Plus (corrected mortality 80.5% compared to 66.6%). Similar blood feeding inhibition rates were observed for unwashed PermaNet® 3.0 and Olyset® Plus; however, PermaNet® 3.0 washed 20 times demonstrated significantly higher blood feeding inhibition rate than Olyset® Plus washed 20 times (91.1% compared with 85.6% respectively). Yorkool® performed the worst for all the parameters evaluated. In an area of pyrethroid resistance of An. gambiae s.l involving kdr target site and metabolic resistance mechanisms, LLINs with PBO can provide additional protection in terms of reduction in blood feeding and increase in mosquito mortality compared to a pyrethroid-only net, and should be considered in malaria vector control strategies.


Subject(s)
Anopheles/drug effects , Insecticide-Treated Bednets/statistics & numerical data , Insecticides/pharmacology , Malaria/prevention & control , Piperonyl Butoxide/pharmacology , Pyrethrins/pharmacology , Animals , Anopheles/genetics , Anopheles/metabolism , Genes, Insect , Humans , Insecticide Resistance/genetics , Malaria/transmission , Mosquito Control/methods , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Mosquito Vectors/metabolism , Togo
16.
Wellcome Open Res ; 3: 30, 2018.
Article in English | MEDLINE | ID: mdl-29707654

ABSTRACT

Background: To optimize the success of insecticide-based malaria control intervention, knowledge of the distribution of Anopheles gambiae species and insecticide resistance mechanisms is necessary. This paper reported an updated data on pyrethroids/DDT resistance in the An. gambiae s.l population from Togo.  Methods: From December 2013 to April 2015, females of indoor-resting An. gambiae s.l were captured in three locations belonging to three different ecological zones. Resistance to DDT, permethrin and deltamethrin was screened in F1 progeny of collected mosquitoes using WHO susceptibility tests. The identification of species of An. gambiae complex and the detection of kdr and ace.1 R allele were carried out using DNA-based molecular techniques. Results:An. gambiae from Kovié and Nangbéto were highly resistant to DDT and permethrin with mortalities rate ranging from 0.83% to 1.58% for DDT and zero to 8.54% for permethrin. Mosquitoes collected in Nangbéto displayed 81.53% mortality with deltamethrin. An. coluzzii and An. gambiae s.s were found in sympatry in Nangbéto and Mango . The allelic frequency of L1014F was high, ranging from 66 to 100% in both An. coluzzii and An. gambiae s.s. For the first time we detected the L1014S allele in both An. coluzzii and An. gambiaes.s. from Togo at the frequency ranging from 5% to 13% in all the sites. The kdr N1575Y was present at various frequencies in both species ranging from 10% to 45%. Both An. gambiae s.s. and An. coluzzii shared the ace1 R mutation in all investigated sites with allelic frequency ranging from 4% to 16%. Conclusion: These results showed that multiple mutations are involved in insecticides resistance in An. gambiae populations from Togo including the kdr L1014F, L1014S, and N1575Y and ace.1 R G119S mutations.

17.
Parasit Vectors ; 11(1): 52, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29361964

ABSTRACT

BACKGROUND: Lymphatic filariasis (LF) is a mosquito-borne filarial disease targeted for elimination by the year 2020. The Republic of Togo undertook mass treatment of entire endemic communities from 2000 to 2009 to eliminate the transmission of the disease and is currently the first sub-Saharan African country to be validated by WHO for the elimination of LF as a public health problem. However, post-validation surveillance activities are required to ensure the gains achieved are sustained. This survey assessed the mosquito vectors of the disease and determined the presence of infection in these vectors, testing the hypothesis that transmission has already been interrupted in Togo. METHOD: Mosquitoes were collected from 37 villages located in three districts in one of four evaluation units in the country. In each district, 30 villages were selected based on probability proportionate to size; eight villages (including one of the 30 villages already selected) where microfilaremia-positive cases had been identified during post-treatment surveillance activities were intentionally sampled. Mosquitoes were collected using pyrethrum spray collections (PSC) in households randomly selected in all villages for five months. In the purposefully selected communities, mosquitoes were also collected using human landing collections (HLC) and exit traps (ET). Collected mosquitoes were identified morphologically, and the identification of Wuchereria bancrofti DNA in the mosquitoes was based on the pool screening method, using the LAMP assay. RESULTS: A total of 15,539 mosquitoes were collected during the study. Anopheles gambiae (72.6%) was the predominant LF vector collected using PSC. Pool screen analysis of 9191 An. gambiae in 629 pools revealed no mosquitoes infected with W. bancrofti (0%; CI: 0-0.021). CONCLUSIONS: These results confirm the findings of epidemiological transmission assessment surveys conducted in 2012 and 2015, which demonstrated the absence of LF transmission in Togo. The challenges of implementing molecular xenomonitoring are further discussed.


Subject(s)
Anopheles/parasitology , DNA, Helminth/genetics , Elephantiasis, Filarial/epidemiology , Elephantiasis, Filarial/transmission , Epidemiological Monitoring , Wuchereria bancrofti/genetics , Animals , Culex/parasitology , Elephantiasis, Filarial/parasitology , Filaricides/administration & dosage , Humans , Mosquito Vectors/parasitology , Nucleic Acid Amplification Techniques/methods , Public Health , Temperature , Togo/epidemiology , World Health Organization , Wuchereria bancrofti/isolation & purification
18.
Pest Manag Sci ; 71(3): 452-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24863547

ABSTRACT

BACKGROUND: The taxonomy of the species complex Bemisia tabaci, a serious agricultural pest worldwide, is not well resolved yet, even though species delimitation is critical for designing effective control strategies. Based on a threshold of 3.5% mitochondrial (mtCOI) sequence divergence, recent studies have identified 28 putative species. Among them, mitochondrial variability associated with particular symbiotic compositions (=cytotypes) can be observed, as in MED, which raises the question of whether it is a single or a complex of biological species. RESULTS: Using microsatellites, an investigation was made of the genetic relatedness of Q1 and ASL cytotypes that belong to MED. Samples of the two cytotypes were collected in West Africa where they live in sympatry on the same hosts. Genotyping revealed a high level of differentiation, without evidence of gene flow. Moreover, they differed highly in frequencies of resistance alleles to insecticides, which were much higher in Q1 than in ASL. CONCLUSION: Q1 and ASL are sufficiently reproductively isolated for the introgression of neutral alleles to be prevented, suggesting that they are actually different species. This indicates that nuclear genetic differentiation must be investigated within groups with less than 3.5% mtCOI divergence in order to elucidate the taxonomy of B. tabaci at a finer level. Overall, these data provide important information for pest management.


Subject(s)
Hemiptera/classification , Hemiptera/genetics , Mitochondria/genetics , Africa, Western , Animals , Female , Gene Flow , Genotype , Insecticide Resistance/genetics , Male , Microsatellite Repeats/genetics
19.
PLoS Genet ; 10(3): e1004236, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24651294

ABSTRACT

Malaria control relies heavily on pyrethroid insecticides, to which susceptibility is declining in Anopheles mosquitoes. To combat pyrethroid resistance, application of alternative insecticides is advocated for indoor residual spraying (IRS), and carbamates are increasingly important. Emergence of a very strong carbamate resistance phenotype in Anopheles gambiae from Tiassalé, Côte d'Ivoire, West Africa, is therefore a potentially major operational challenge, particularly because these malaria vectors now exhibit resistance to multiple insecticide classes. We investigated the genetic basis of resistance to the most commonly-applied carbamate, bendiocarb, in An. gambiae from Tiassalé. Geographically-replicated whole genome microarray experiments identified elevated P450 enzyme expression as associated with bendiocarb resistance, most notably genes from the CYP6 subfamily. P450s were further implicated in resistance phenotypes by induction of significantly elevated mortality to bendiocarb by the synergist piperonyl butoxide (PBO), which also enhanced the action of pyrethroids and an organophosphate. CYP6P3 and especially CYP6M2 produced bendiocarb resistance via transgenic expression in Drosophila in addition to pyrethroid resistance for both genes, and DDT resistance for CYP6M2 expression. CYP6M2 can thus cause resistance to three distinct classes of insecticide although the biochemical mechanism for carbamates is unclear because, in contrast to CYP6P3, recombinant CYP6M2 did not metabolise bendiocarb in vitro. Strongly bendiocarb resistant mosquitoes also displayed elevated expression of the acetylcholinesterase ACE-1 gene, arising at least in part from gene duplication, which confers a survival advantage to carriers of additional copies of resistant ACE-1 G119S alleles. Our results are alarming for vector-based malaria control. Extreme carbamate resistance in Tiassalé An. gambiae results from coupling of over-expressed target site allelic variants with heightened CYP6 P450 expression, which also provides resistance across contrasting insecticides. Mosquito populations displaying such a diverse basis of extreme and cross-resistance are likely to be unresponsive to standard insecticide resistance management practices.


Subject(s)
Anopheles/genetics , Cytochrome P-450 Enzyme System/genetics , Insecticide Resistance/genetics , Malaria/transmission , Acetylcholinesterase/genetics , Africa, Western , Animals , Animals, Genetically Modified/genetics , Carbamates/pharmacology , Drosophila/drug effects , Drosophila/genetics , Malaria/genetics , Phenotype , Phenylcarbamates/pharmacology , Pyrethrins/pharmacology
20.
Pest Manag Sci ; 66(11): 1181-5, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20721972

ABSTRACT

BACKGROUND: The tobacco whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), has developed a high degree of resistance to several chemical classes of insecticides throughout the world. To evaluate the resistance status in West Africa, eight insecticides from different chemical families were tested using the leaf-dip method on four field populations collected from cotton in Benin, Togo and Burkina Faso. RESULTS: Some field populations showed a significant loss of susceptibility to pyrethroids such as deltamethrin [resistance ratio (RR) 3-5] and bifenthrin (RR 4-36), to organophosphates (OPs) such as dimethoate (RR 8-15) and chlorpyrifos (RR 5-7) and to neonicotinoids such as acetamiprid (RR 7-8) and thiamethoxam (RR 3-7). Bemisia tabaci was also resistant to pymetrozine (RR 3-18) and to endosulfan (RR 14-30). CONCLUSION: The resistance of B. tabaci to pyrethroids and OPs is certainly due to their systematic use in cotton treatments for more than 30 years. Acetamiprid has been recently introduced for the control of whiteflies. Unfortunately, B. tabaci populations from Burkina Faso seem to be already resistant. Because cross-resistance between these compounds has never been observed elsewhere, resistance to neonicotinoids could be due to the presence of an invasive B. tabaci biotype recently detected in the region.


Subject(s)
Hemiptera/drug effects , Insecticide Resistance , Insecticides , Africa, Western , Animals , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...