Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 4815, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38413683

ABSTRACT

The increasing frequency and severity of UK wildfires, attributed in part to the effects of climate change, highlights the critical role of fuel moisture content (FMC) of live and dead vegetation in shaping wildfire behaviour. However, current models used to assess wildfire danger do not perform well in shrub-type fuels such as Calluna vulgaris, requiring in part an improved understanding of fuel moisture dynamics on diurnal and seasonal scales. To this end, 554 samples of upper live Calluna canopy, live Calluna stems, upper dead Calluna canopy, dead Calluna stems, moss, litter and organic layer (top 5 cm of organic material above mineral soil) were sampled hourly between 10:00 and 18:00 on seven days from March-August. Using a novel statistical method for investigating diurnal patterns, we found distinctive diurnal and seasonal trends in FMC for all fuel layers. Notably, significant diurnal patterns were evident in dead Calluna across nearly all sampled months, while diurnal trends in live Calluna canopy were pronounced in March, June, and August, coinciding with the peak occurrence of UK wildfires. In addition, the moisture content of moss and litter was found to fluctuate above and below their relative ignition thresholds throughout the day on some sampling days. These findings underscore the impact of diurnal FMC variations on wildfire danger during early spring and late summer in Calluna dominated peatlands and the need to consider such fluctuations in management and fire suppression strategies.


Subject(s)
Bryophyta , Calluna , Fires , Wildfires , Ecosystem , Soil
2.
Glob Chang Biol ; 29(12): 3256-3270, 2023 06.
Article in English | MEDLINE | ID: mdl-36994691

ABSTRACT

Mangroves are among the most carbon-dense ecosystems worldwide. Most of the carbon in mangroves is found belowground, and root production might be an important control of carbon accumulation, but has been rarely quantified and understood at the global scale. Here, we determined the global mangrove root production rate and its controls using a systematic review and a recently formalised, spatially explicit mangrove typology framework based on geomorphological settings. We found that global mangrove root production averaged ~770 ± 202 g of dry biomass m-2 year-1 globally, which is much higher than previously reported and close to the root production of the most productive tropical forests. Geomorphological settings exerted marked control over root production together with air temperature and precipitation (r2 ≈ 30%, p < .001). Our review shows that individual global changes (e.g. warming, eutrophication, drought) have antagonist effects on root production, but they have rarely been studied in combination. Based on this newly established root production rate, root-derived carbon might account for most of the total carbon buried in mangroves, and 19 Tg C lost in mangroves each year (e.g. as CO2 ). Inclusion of root production measurements in understudied geomorphological settings (i.e. deltas), regions (Indonesia, South America and Africa) and soil depth (>40 cm), as well as the creation of a mangrove root trait database will push forward our understanding of the global mangrove carbon cycle for now and the future. Overall, this review presents a comprehensive analysis of root production in mangroves, and highlights the central role of root production in the global mangrove carbon budget.


Subject(s)
Carbon , Ecosystem , Wetlands , Biomass , Forests , Soil
3.
Risk Anal ; 43(9): 1745-1762, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36509545

ABSTRACT

We estimate the country-level risk of extreme wildfires defined by burned area (BA) for Mediterranean Europe and carry out a cross-country comparison. To this end, we avail of the European Forest Fire Information System (EFFIS) geospatial data from 2006 to 2019 to perform an extreme value analysis. More specifically, we apply a point process characterization of wildfire extremes using maximum likelihood estimation. By modeling covariates, we also evaluate potential trends and correlations with commonly known factors that drive or affect wildfire occurrence, such as the Fire Weather Index as a proxy for meteorological conditions, population density, land cover type, and seasonality. We find that the highest risk of extreme wildfires is in Portugal (PT), followed by Greece (GR), Spain (ES), and Italy (IT) with a 10-year BA return level of 50'338 ha, 33'242 ha, 25'165 ha, and 8'966 ha, respectively. Coupling our results with existing estimates of the monetary impact of large wildfires suggests expected losses of 162-439 million € (PT), 81-219 million € (ES), 41-290 million € (GR), and 18-78 million € (IT) for such 10-year return period events. SUMMARY: We model the risk of extreme wildfires for Italy, Greece, Portugal, and Spain in form of burned area return levels, compare them, and estimate expected losses.

4.
Sci Total Environ ; 803: 149577, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34487896

ABSTRACT

Forested coastal wetlands are globally important systems sequestering carbon and intercepting nitrogen pollution from nutrient-rich river systems. Coastal wetlands that have suffered extensive disturbance are the target of comprehensive restoration efforts. Accurate assessment of restoration success requires detailed mechanistic understanding of wetland soil biogeochemical functioning across restoration chrono-sequences, which remains poorly understood for these sparsely investigated systems. This study investigated denitrification and greenhouse gas fluxes in mangrove and Melaleuca forest soils of Vietnam, using the 15N-Gas flux method. Denitrification-derived N2O was significantly higher from Melaleuca than mangrove forest soils, despite higher potential rates of total denitrification in the mangrove forest soils (8.1 ng N g-1 h-1) than the Melaleuca soils (6.8 ng N g-1 h-1). Potential N2O and CO2 emissions were significantly higher from the Melaleuca soils than from the mangrove soils. Disturbance and subsequent recovery had no significant effect on N biogeochemistry except with respect to the denitrification product ratio in the mangrove sites, which was highest from the youngest mangrove site. Potential CO2 and CH4 fluxes were significantly affected by restoration in the mangrove soils. The lowest potential CO2 emissions were observed in the mid-age plantation and potential CH4 fluxes decreased in the older forests. The mangrove system, therefore, may remove excess N and improve water quality with low greenhouse gas emissions, whereas in Melaleucas, increased N2O and CO2 emissions also occur. These emissions are likely balanced by higher carbon stocks observed in the Melaleuca soils. These mechanistic insights highlight the importance of ecosystem restoration for pollution attenuation and reduction of greenhouse gas emissions from coastal wetlands. Restoration efforts should continue to focus on increasing wetland area and function, which will benefit local communities with improved water quality and potential for income generation under future carbon trading.


Subject(s)
Greenhouse Gases , Carbon Dioxide/analysis , Denitrification , Ecosystem , Environmental Monitoring , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Soil , Wetlands
5.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: mdl-34521751

ABSTRACT

Northern peatlands store large amounts of carbon. Observations indicate that forests and peatlands in northern biomes can be alternative stable states for a range of landscape settings. Climatic and hydrological changes may reduce the resilience of peatlands and forests, induce persistent shifts between these states, and release the carbon stored in peatlands. Here, we present a dynamic simulation model constrained and validated by a wide set of observations to quantify how feedbacks in water and carbon cycling control resilience of both peatlands and forests in northern landscapes. Our results show that 34% of Europe (area) has a climate that can currently sustain existing rainwater-fed peatlands (raised bogs). However, raised bog initiation and restoration by water conservation measures after the original peat soil has disappeared is only possible in 10% of Europe where the climate allows raised bogs to initiate and outcompete forests. Moreover, in another 10% of Europe, existing raised bogs (concerning ∼20% of the European raised bogs) are already affected by ongoing climate change. Here, forests may overgrow peatlands, which could potentially release in the order of 4% (∼24 Pg carbon) of the European soil organic carbon pool. Our study demonstrates quantitatively that preserving and restoring peatlands requires looking beyond peatland-specific processes and taking into account wider landscape-scale feedbacks with forest ecosystems.


Subject(s)
Carbon/chemistry , Carbon Cycle , Climate Change , Ecosystem , Europe , Forests , Soil/chemistry , Water/chemistry , Wetlands
6.
Sci Total Environ ; 709: 136075, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31887527

ABSTRACT

Biogeochemical gradients in streambeds are steep and can vary over short distances often making adequate characterisation of sediment biogeochemical processes challenging. This paper provides an overview and comparison of streambed pore-water sampling methods, highlighting their capacity to address gaps in our understanding of streambed biogeochemical processes. This work reviews and critiques available pore-water sampling techniques to characterise streambed biogeochemical conditions, including their characteristic spatial and temporal resolutions, and associated advantages and limitations. A field study comparing three commonly-used pore-water sampling techniques (multilevel mini-piezometers, miniature drivepoint samplers and diffusive equilibrium in thin-film gels) was conducted to assess differences in observed nitrate and ammonium concentration profiles. Pore-water nitrate concentrations did not differ significantly between sampling methods (p-value = 0.54) with mean concentrations of 2.53, 4.08 and 4.02 mg l-1 observed with the multilevel mini-piezometers, miniature drivepoint samplers and diffusive equilibrium in thin-film gel samplers, respectively. Pore-water ammonium concentrations, however, were significantly higher in pore-water extracted by multilevel mini-piezometers (3.83 mg l-1) and significantly lower where sampled with miniature drivepoint samplers (1.05 mg l-1, p-values <0.01). Differences in observed pore-water ammonium concentration profiles between active (suction: multilevel mini-piezometers) and passive (equilibrium; diffusive equilibrium in thin-film gels) samplers were further explored under laboratory conditions. Measured pore-water ammonium concentrations were significantly greater when sampled by diffusive equilibrium in thin-film gels than with multilevel mini-piezometers (all p-values ≤0.02). The findings of this study have critical implications for the interpretation of field-based research on hyporheic zone biogeochemical cycling and highlight the need for more systematic testing of sampling protocols. For the first time, the impact of different active and passive pore-water sampling methods is addressed systematically here, highlighting to what degree the choice of pore-water sampling methods affects research outcomes, with relevance for the interpretation of previously published work as well as future studies.

8.
Sci Total Environ ; 688: 732-741, 2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31255811

ABSTRACT

Streams and rivers are 'active pipelines' where high rates of carbon (C) turnover can lead to globally important emissions of carbon dioxide (CO2) and methane (CH4) from surface waters to the atmosphere. Streambed sediments are particularly important in affecting stream chemistry, with rates of biogeochemical activity, and CO2 and CH4 concentrations far exceeding those in surface waters. Despite an increase in research on CO2 and CH4 in streambed sediments there is a lack of knowledge and insight on seasonal dynamics. In this study the seasonally variable effect of sediment type (sand-dominated versus gravel-dominated) on porewater C cycling, including CO2 and CH4 concentrations, was investigated. We found high concentrations of CO2 and CH4 in the streambed of a small agricultural stream. Sand-dominated sediments were characterised by higher microbial activity and CO2 and CH4 concentrations than gravel-dominated sediments, with CH4:CO2 ratios higher in sand-dominated sediments but rates of recalcitrant C uptake highest in gravel-dominated sediments. CO2 and CH4 concentrations were unexpectedly high year-round, with little variation in concentrations among seasons. Our results indicate that small, agricultural streams, which generally receive large amounts of fine sediment and organic matter (OM), may contribute greatly to annual C cycling in freshwater systems. These results should be considered in future stream management plans where the removal of sandy sediments may perform valuable ecosystem services, reducing C turnover, CO2 and CH4 concentrations, and mitigating greenhouse gas (GHG) production.

10.
Nat Commun ; 9(1): 2803, 2018 07 18.
Article in English | MEDLINE | ID: mdl-30022025

ABSTRACT

Globally, rivers and streams are important sources of carbon dioxide and methane, with small rivers contributing disproportionately relative to their size. Previous research on greenhouse gas (GHG) emissions from surface water lacks mechanistic understanding of contributions from streambed sediments. We hypothesise that streambeds, as known biogeochemical hotspots, significantly contribute to the production of GHGs. With global climate change, there is a pressing need to understand how increasing streambed temperatures will affect current and future GHG production. Current global estimates assume linear relationships between temperature and GHG emissions from surface water. Here we show non-linearity and threshold responses of streambed GHG production to warming. We reveal that temperature sensitivity varies with substrate (of variable grain size), organic matter (OM) content and geological origin. Our results confirm that streambeds, with their non-linear response to projected warming, are integral to estimating freshwater ecosystem contributions to current and future global GHG emissions.

11.
Article in English | MEDLINE | ID: mdl-27216512

ABSTRACT

Fire has been used for centuries to generate and manage some of the UK's cultural landscapes. Despite its complex role in the ecology of UK peatlands and moorlands, there has been a trend of simplifying the narrative around burning to present it as an only ecologically damaging practice. That fire modifies peatland characteristics at a range of scales is clearly understood. Whether these changes are perceived as positive or negative depends upon how trade-offs are made between ecosystem services and the spatial and temporal scales of concern. Here we explore the complex interactions and trade-offs in peatland fire management, evaluating the benefits and costs of managed fire as they are currently understood. We highlight the need for (i) distinguishing between the impacts of fires occurring with differing severity and frequency, and (ii) improved characterization of ecosystem health that incorporates the response and recovery of peatlands to fire. We also explore how recent research has been contextualized within both scientific publications and the wider media and how this can influence non-specialist perceptions. We emphasize the need for an informed, unbiased debate on fire as an ecological management tool that is separated from other aspects of moorland management and from political and economic opinions.This article is part of the themed issue 'The interaction of fire and mankind'.


Subject(s)
Conservation of Natural Resources/methods , Fires , Wetlands , Conservation of Natural Resources/legislation & jurisprudence , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...