Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
NMR Biomed ; 37(5): e5108, 2024 May.
Article in English | MEDLINE | ID: mdl-38273732

ABSTRACT

Functional MRI (fMRI) and MRS (fMRS) can be used to noninvasively map cerebral activation and metabolism. Recently, hyperpolarized 13C spectroscopy and metabolic imaging have provided an alternative approach to assess metabolism. In this study, we combined 1H fMRI and hyperpolarized [1-13C]pyruvate MRS to compare cerebral blood oxygenation level-dependent (BOLD) response and real-time cerebral metabolism, as assessed with lactate and bicarbonate labelling, during nicotine stimulation. Simultaneous 1H fMRI (multislice gradient echo echo-planar imaging) and 13C spectroscopic (single slice pulse-acquire) data were collected in urethane-anaesthetized female Sprague-Dawley rats (n = 12) at 9.4 T. Animals received an intravenous (i.v.) injection of either nicotine (stimulus; 88 µg/kg, n = 7, or 300 µg/kg, n = 5) or 0.9% saline (matching volume), followed by hyperpolarized [1-13C]pyruvate injection 60 s later. Three hours later, a second injection was administered: the animals that had previously received saline were injected with nicotine and vice versa, both followed by another hyperpolarized [1-13C]pyruvate i.v. injection 60 s later. The low-dose (88 µg/kg) nicotine injection led to a 12% ± 4% (n = 7, t-test, p ~ 0.0006 (t-value -5.8, degrees of freedom 6), Wilcoxon p ~ 0.0078 (test statistic 0)) increase in BOLD signal. At the same time, an increase in 13C-bicarbonate signal was seen in four out of six animals. Bicarbonate-to-total carbon ratios were 0.010 ± 0.004 and 0.018 ± 0.010 (n = 6, t-test, p ~ 0.03 (t-value -2.3, degrees of freedom 5), Wilcoxon p ~ 0.08 (test statistic 3)) for saline and nicotine experiments, respectively. No increase in the lactate signal was seen; lactate-to-total carbon was 0.16 ± 0.02 after both injections. The high (300 µg/kg) nicotine dose (n = 5) caused highly variable BOLD and metabolic responses, possibly due to the apparent respiratory distress. Simultaneous detection of 1H fMRI and hyperpolarized 13C-MRS is feasible. A comparison of metabolic response between control and stimulated states showed differences in bicarbonate signal, implying that the hyperpolarization technique could offer complimentary information on brain activation.


Subject(s)
Magnetic Resonance Imaging , Pyruvic Acid , Rats , Female , Animals , Magnetic Resonance Imaging/methods , Pyruvic Acid/metabolism , Nicotine/pharmacology , Rats, Sprague-Dawley , Bicarbonates/metabolism , Carbon Isotopes/metabolism , Lactic Acid/metabolism
2.
Mol Metab ; 78: 101823, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839774

ABSTRACT

OBJECTIVE: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most prevalent liver disease globally, yet no therapies are approved. The effects of Escherichia coli Nissle 1917 expressing aldafermin, an engineered analog of the intestinal hormone FGF19, in combination with dietary change were investigated as a potential treatment for MASLD. METHODS: MASLD was induced in C57BL/6J male mice by American lifestyle-induced obesity syndrome diet and then switched to a standard chow diet for seven weeks. In addition to the dietary change, the intervention group received genetically engineered E. coli Nissle expressing aldafermin, while control groups received either E. coli Nissle vehicle or no treatment. MASLD-related plasma biomarkers were measured using an automated clinical chemistry analyzer. The liver steatosis was assessed by histology and bioimaging analysis using Fiji (ImageJ) software. The effects of the intervention in the liver were also evaluated by RNA sequencing and liquid-chromatography-based non-targeted metabolomics analysis. Pathway enrichment studies were conducted by integrating the differentially expressed genes from the transcriptomics findings with the metabolites from the metabolomics results using Ingenuity pathway analysis. RESULTS: After the intervention, E. coli Nissle expressing aldafermin along with dietary changes reduced body weight, liver steatosis, plasma aspartate aminotransferase, and plasma cholesterol levels compared to the two control groups. The integration of transcriptomics with non-targeted metabolomics analysis revealed the downregulation of amino acid metabolism and related receptor signaling pathways potentially implicated in the reduction of hepatic steatosis and insulin resistance. Moreover, the downregulation of pathways linked to lipid metabolism and changes in amino acid-related pathways suggested an overall reduction of oxidative stress in the liver. CONCLUSIONS: These data support the potential for using engineered microbial therapeutics in combination with dietary changes for managing MASLD.


Subject(s)
Escherichia coli , Non-alcoholic Fatty Liver Disease , Male , Mice , Animals , Escherichia coli/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Diet , Metabolic Networks and Pathways , Amino Acids/metabolism
3.
Chemphyschem ; 24(19): e202300100, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37431722

ABSTRACT

This paper reports the synthesis, characterization and in vivo application of water-soluble supramolecular contrast agents (Mw: 5-5.6 kDa) for MRI obtained from ß-cyclodextrin functionalized with different kinds of nitroxide radicals, both with piperidine structure (CD2 and CD3) and with pyrrolidine structure (CD4 and CD5). As to the stability of the radicals in presence of ascorbic acid, CD4 and CD5 have low second order kinetic constants (≤0.05 M-1 s-1 ) compared to CD2 (3.5 M-1 s-1 ) and CD3 (0.73 M-1 s-1 ). Relaxivity (r1 ) measurements on compounds CD3-CD5 were carried out at different magnetic field strength (0.7, 3, 7 and 9.4 T). At 0.7 T, r1 values comprised between 1.5 mM-1 s-1 and 1.9 mM-1 s-1 were found while a significant reduction was observed at higher fields (r1 ≈0.6-0.9 mM-1 s-1 at 9.4 T). Tests in vitro on HEK293 human embryonic kidney cells, L929 mouse fibroblasts and U87 glioblastoma cells indicated that all compounds were non-cytotoxic at concentrations below 1 µmol mL-1 . MRI in vivo was carried out at 9.4 T on glioma-bearing rats using the compounds CD3-CD5. The experiments showed a good lowering of T1 relaxation in tumor with a retention of the contrast for at least 60 mins confirming improved stability also in vivo conditions.


Subject(s)
Contrast Media , Cyclodextrins , Mice , Rats , Humans , Animals , Contrast Media/toxicity , Contrast Media/chemistry , HEK293 Cells , Magnetic Resonance Imaging/methods , Oxidation-Reduction
4.
Magn Reson Med ; 90(2): 708-721, 2023 08.
Article in English | MEDLINE | ID: mdl-37145027

ABSTRACT

PURPOSE: Recent studies indicate that T1 in white matter (WM) is influenced by fiber orientation in B0 . The purpose of the study was to investigate the interrelationships between axon fiber orientation in corpus callosum (CC) and T1 relaxation time in humans in vivo as well as in rat brain ex vivo. METHODS: Volunteers were scanned for relaxometric and diffusion MRI at 3 T and 7 T. Angular T1 plots from WM were computed using fractional anisotropy and fiber-to-field-angle maps. T1 and fiber-to-field angle were measured in five sections of CC to estimate the effects of inherently varying fiber orientations on T1 within the same tracts in vivo. Ex vivo rat-brain preparation encompassing posterior CC was rotated in B0 and T1 , and diffusion MRI images acquired at 9.4 T. T1 angular plots were determined at several rotation angles in B0 . RESULTS: Angular T1 plots from global WM provided reference for estimated fiber orientation-linked T1 changes within CC. In anterior midbody of CC in vivo, where small axons are dominantly present, a shift in axon orientation is accompanied by a change in T1 , matching that estimated from WM T1 data. In CC, where large and giant axons are numerous, the measured T1 change is about 2-fold greater than the estimated one. Ex vivo rotation of the same midsagittal CC region of interest produced angular T1 plots at 9.4 T, matching those observed at 7 T in vivo. CONCLUSION: These data causally link axon fiber orientation in B0 to the T1 relaxation anisotropy in WM.


Subject(s)
White Matter , Humans , White Matter/diagnostic imaging , Corpus Callosum/diagnostic imaging , Anisotropy , Axons , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
5.
J Nutr Biochem ; 115: 109307, 2023 05.
Article in English | MEDLINE | ID: mdl-36868506

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) pathogenesis remains poorly understood due to the complex metabolic and inflammatory changes in the liver. This study aimed to elucidate hepatic events related to inflammation and lipid metabolism and their linkage with metabolic alterations during NAFLD in American lifestyle-induced obesity syndrome (ALIOS) diet-fed mice. Forty-eight C57BL/6J male mice were fed with ALIOS diet (n=24) or control chow diet (n=24) for 8, 12, and 16 weeks. At the end of each timepoint, eight mice were sacrificed where plasma and liver were collected. Hepatic fat accumulation was followed using magnetic resonance imaging and confirmed with histology. Further, targeted gene expression and non-targeted metabolomics analysis were conducted. Our results showed higher hepatic steatosis, body weight, energy consumption, and liver mass in ALIOS diet-fed mice compared to control mice. ALIOS diet altered expression of genes related to inflammation (Tnfa and IL-6) and lipid metabolism (Cd36, Fasn, Scd1, Cpt1a, and Ppara). Metabolomics analysis indicated decrease of lipids containing polyunsaturated fatty acids such as LPE(20:5) and LPC(20:5) with increase of other lipid species such as LPI(16:0) and LPC(16:2) and peptides such as alanyl-phenylalanine and glutamyl-arginine. We further observed novel correlations between different metabolites including sphingolipid, lysophospholipids, peptides, and bile acid with inflammation, lipid uptake and synthesis. Together with the reduction of antioxidant metabolites and gut microbiota-derived metabolites contribute to NAFLD development and progression. The combination of non-targeted metabolomics with gene expression in future studies can further identify key metabolic routes during NAFLD which could be the targets of potential novel therapeutics.


Subject(s)
Non-alcoholic Fatty Liver Disease , Male , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Liver/metabolism , Obesity/metabolism , Lipid Metabolism/genetics , Inflammation/metabolism , Lipids , Gene Expression
6.
Angew Chem Int Ed Engl ; 61(28): e202203957, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35499690

ABSTRACT

Molecular exchange processes are ubiquitous in nature. Here, we introduce a method to analyze exchange processes by using low-cost, portable, single-sided NMR instruments. The inherent magnetic field inhomogeneity of the single-sided instruments is exploited to achieve diffusion contrast of exchange sites and spatial encoding of 2D data. This so-called ultrafast diffusion exchange spectroscopy method shortens the experiment time by two to four orders of magnitude. Furthermore, because full 2D data are measured in a single scan (in a fraction of a second), the sensitivity of the experiment can be improved by several orders of magnitude using so-called nuclear spin hyperpolarization methods (in this case, dissolution dynamic nuclear polarization). As the first demonstration of the feasibility of the method in various applications, we show that the method enables quantification of intra- and extracellular exchange of water in a yeast cell suspension.


Subject(s)
Magnetic Resonance Imaging , Water , Diffusion , Magnetic Resonance Spectroscopy/methods , Water/chemistry
7.
NMR Biomed ; 35(2): e4635, 2022 02.
Article in English | MEDLINE | ID: mdl-34672399

ABSTRACT

The use of hyperpolarised 13 C pyruvate for nononcological neurological applications has not been widespread so far, possibly due to delivery issues limiting the visibility of metabolites. First proof-of-concept results have indicated that metabolism can be detected in human brain, and this may supersede the results obtained in preclinical settings. One major difference between the experimental setups is that preclinical MRI/MRS routinely uses anaesthesia, which alters both haemodynamics and metabolism. Here, we used hyperpolarised [1-13 C]pyruvate to compare brain metabolism in awake rats and under isoflurane, urethane or medetomidine anaesthesia. Spectroscopic [1-13 C]pyruvate time courses measured sequentially showed that pyruvate-to-bicarbonate and pyruvate-to-lactate labelling rates were lower in isoflurane animals than awake animals. An increased bicarbonate-to-lactate ratio was observed in the medetomidine group compared with other groups. The study shows that hyperpolarised [1-13 C]pyruvate experiments can be performed in awake rats, thus avoiding anaesthesia-related issues. The results suggest that haemodynamics probably dominate the observed pyruvate-to-metabolite labelling rates and area-under-time course ratios of referenced to pyruvate. On the other hand, the results obtained with medetomidine suggest that the ratios are also modulated by the underlying cerebral metabolism. However, the ratios between intracellular metabolites were unchanged in awake compared with isoflurane-anaesthetised rats.


Subject(s)
Brain/metabolism , Isoflurane/pharmacology , Pyruvic Acid/metabolism , Anesthesia , Animals , Carbon Isotopes , Female , Rats , Rats, Sprague-Dawley , Rats, Wistar , Wakefulness
8.
Pharmaceutics ; 13(10)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34683941

ABSTRACT

Barded-Biedl syndrome (BBS) is a rare genetic disorder with an unmet medical need for retinal degeneration. Small-molecule drugs were previously identified to slow down the apoptosis of photoreceptors in BBS mouse models. Clinical translation was not practical due to the necessity of repetitive invasive intravitreal injections for pediatric populations. Non-invasive methods of retinal drug targeting are a prerequisite for acceptable adaptation to the targeted pediatric patient population. Here, we present the development and functional testing of a non-invasive, topical, magnetically assisted delivery system, harnessing the ability of magnetic nanoparticles (MNPs) to cargo two drugs (guanabenz and valproic acid) with anti-unfolded protein response (UPR) properties towards the retina. Using magnetic resonance imaging (MRI), we showed the MNPs' presence in the retina of Bbs wild-type mice, and their photoreceptor localization was validated using transmission electron microscopy (TEM). Subsequent electroretinogram recordings (ERGs) demonstrated that we achieved beneficial biological effects with the magnetically assisted treatment translating the maintained light detection in Bbs-/- mice (KO). To our knowledge, this is the first demonstration of efficient magnetic drug targeting in the photoreceptors in vivo after topical administration. This non-invasive, needle-free technology expands the application of SMDs for the treatment of a vast spectrum of retinal degenerations and other ocular diseases.

9.
J Imaging ; 7(2)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-34460637

ABSTRACT

In dynamic MRI, sufficient temporal resolution can often only be obtained using imaging protocols which produce undersampled data for each image in the time series. This has led to the popularity of compressed sensing (CS) based reconstructions. One problem in CS approaches is determining the regularization parameters, which control the balance between data fidelity and regularization. We propose a data-driven approach for the total variation regularization parameter selection, where reconstructions yield expected sparsity levels in the regularization domains. The expected sparsity levels are obtained from the measurement data for temporal regularization and from a reference image for spatial regularization. Two formulations are proposed. Simultaneous search for a parameter pair yielding expected sparsity in both domains (S-surface), and a sequential parameter selection using the S-curve method (Sequential S-curve). The approaches are evaluated using simulated and experimental DCE-MRI. In the simulated test case, both methods produce a parameter pair and reconstruction that is close to the root mean square error (RMSE) optimal pair and reconstruction. In the experimental test case, the methods produce almost equal parameter selection, and the reconstructions are of high perceived quality. Both methods lead to a highly feasible selection of the regularization parameters in both test cases while the sequential method is computationally more efficient.

10.
Epilepsy Res ; 176: 106730, 2021 10.
Article in English | MEDLINE | ID: mdl-34364020

ABSTRACT

Pathophysiological consequences of focal non-convulsive status epilepticus (fNCSE) have been difficult to demonstrate in humans. In rats fNCSE pathology has been identified in the eyes. Here we evaluated the use of high-resolution 7 T structural T1-weighted magnetic resonance imaging (MRI) and 9.4 T diffusion tensor imaging (DTI) for detecting hippocampal fNCSE-induced retinal pathology ex vivo in mice. Seven weeks post-fNCSE, increased number of Iba1+ microglia were evident in the retina ipsilateral to the hemisphere with fNCSE, and morphologically more activated microglia were found in both ipsi- and contralateral retina compared to non-stimulated control mice. T1-weighted intensity measurements of the contralateral retina showed a minor increase within the outer nuclear and plexiform layers of the lateral retina. T1-weighted measurements were not performed in the ipsilateral retina due to technical difficulties. DTI fractional anisotropy(FA) values were discretely altered in the lateral part of the ipsilateral retina and unaltered in the contralateral retina. No changes were observed in the distal part of the optic nerve. The sensitivity of both imaging techniques for identifying larger retinal alteration was confirmed ex vivo in retinitis pigmentosa mice where a substantial neurodegeneration of the outer retinal layers is evident. With MR imaging a 50 % decrease in DTI FA values and significantly thinner retina in T1-weighted images were detected. We conclude that retinal pathology after fNCSE in mice is subtle and present bilaterally. High-resolution T1-weighted MRI and DTI independently did not detect the entire pathological retinal changes after fNCSE, but the combination of the two techniques indicated minor patchy structural changes.


Subject(s)
Diffusion Tensor Imaging , Status Epilepticus , Animals , Anisotropy , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Mice , Rats , Retina/diagnostic imaging , Status Epilepticus/pathology
11.
Front Pharmacol ; 12: 679759, 2021.
Article in English | MEDLINE | ID: mdl-33995109

ABSTRACT

Mephedrone (4-MMC), despite its illegal status, is still a widely used psychoactive substance. Its effects closely mimic those of the classical stimulant drug methamphetamine (METH). Recent research suggests that unlike METH, 4-MMC is not neurotoxic on its own. However, the neurotoxic effects of 4-MMC may be precipitated under certain circumstances, such as administration at high ambient temperatures. Common use of 4-MMC in conjunction with alcohol raises the question whether this co-consumption could also precipitate neurotoxicity. A total of six groups of adolescent rats were treated twice daily for four consecutive days with vehicle, METH (5 mg/kg) or 4-MMC (30 mg/kg), with or without ethanol (1.5 g/kg). To investigate persistent delayed effects of the administrations at two weeks after the final treatments, manganese-enhanced magnetic resonance imaging brain scans were performed. Following the scans, brains were collected for Golgi staining and spine analysis. 4-MMC alone had only subtle effects on neuronal activity. When administered with ethanol, it produced a widespread pattern of deactivation, similar to what was seen with METH-treated rats. These effects were most profound in brain regions which are known to have high dopamine and serotonin activities including hippocampus, nucleus accumbens and caudate-putamen. In the regions showing the strongest activation changes, no morphological changes were observed in spine analysis. By itself 4-MMC showed few long-term effects. However, when co-administered with ethanol, the apparent functional adaptations were profound and comparable to those of neurotoxic METH.

12.
Chempluschem ; 85(6): 1171-1178, 2020 06.
Article in English | MEDLINE | ID: mdl-32496028

ABSTRACT

Cyclodextrins (CDs), a class of cyclic oligosaccharides formed by α-(1,4) linked glucopyranose units, were functionalized with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) radicals to prepare water soluble supramolecular organic radical contrast agents (ORCAs) for the in vivo detection of glioma tumor in animal models. A first set of molecules (CDn1, n=6,7,8 is the number of both TEMPO and glucopyranose units) was studied by superconducting quantum interference devices (SQUID) magnetometry in order to define the role of the CD macrocycle on the effective magnetic moment (µeff ). The µeff value increased from 3.982 µB (CD61) to 4.522 µB (CD81) but was limited by intramolecular antiferromagnetic (AF) interactions. A set of water-soluble ORCAs (CDn8, n=6,7,8) was prepared by a sequence of thiol-ene and Cu(I)-catalyzed alkyne-azide "click" reactions. Their 1 H water relaxivities r1 of these ORCAs were between 0.739 mM-1 s-1 (CD68) to 1.047 mM-1 s-1 (CD88) in D2 O/H2 O 9 : 1 (v : v) at 300 K. One of them (CD78) was tested on glioma-bearing rats with reduced side effects and good relaxivity in vivo.


Subject(s)
Contrast Media/chemistry , Cyclic N-Oxides/chemistry , Cyclodextrins/chemistry , Glioma/diagnostic imaging , Animals , Female , Magnetic Resonance Imaging , Rats, Wistar
13.
NMR Biomed ; 33(4): e4250, 2020 04.
Article in English | MEDLINE | ID: mdl-31909530

ABSTRACT

Hyperpolarised [1-13 C]pyruvate MRI has shown promise in monitoring therapeutic efficacy in a number of cancers including glioma. In this study, we assessed the pyruvate response to the lentiviral suicide gene therapy of herpes simplex virus-1 thymidine kinase with the prodrug ganciclovir (HSV-TK/GCV) in C6 rat glioma and compared it with traditional MR therapy markers. Female Wistar rats were inoculated with 106 C6 glioma cells. Treated animals received intratumoural lentiviral HSV-TK gene transfers on days 7 and 8 followed by 2-week GCV therapy starting on day 10. Animals were repeatedly imaged during therapy using volumetric MRI, diffusion and relaxation mapping, as well as metabolic [1-13 C]pyruvate MRS imaging. Survival (measured as time before animals reached a humane endpoint and were euthanised) was assessed up to day 30 posttherapy. HSV-TK/GCV gene therapy lengthened the median survival time from 12 to 25 days. This was accompanied by an apparent tumour growth arrest, but no changes in diffusion or relaxation parameters in treated animals. The metabolic response was more evident in the case-by-case analysis than in the group-level analysis. Treated animals also showed a 37 ± 15% decrease (P < 0.05, n = 5) in lactate-to-pyruvate ratio between therapy weeks, whereas a 44 ± 18% increase (P < 0.05, n = 6) was observed in control animals. Hyperpolarised [1-13 C]pyruvate MRI can offer complementary metabolic information to traditional MR methods to give a more comprehensive picture of the slowly developing gene therapy response. This may benefit the detection of the successful therapy response in patients.


Subject(s)
Carbon Isotopes/chemistry , Genes, Transgenic, Suicide , Genetic Therapy , Glioma/genetics , Glioma/therapy , Lentivirus/genetics , Pyruvic Acid/metabolism , Animals , Cell Line, Tumor , Cell Survival , Ganciclovir/therapeutic use , Glioma/diagnostic imaging , Glioma/drug therapy , Humans , Magnetic Resonance Imaging , Rats, Wistar , Water
14.
Methods Mol Biol ; 1928: 409-426, 2019.
Article in English | MEDLINE | ID: mdl-30725467

ABSTRACT

Hyperpolarized magnetic resonance imaging (MRI) can be used to detect real-time in vivo tumor metabolism. Dissolution dynamic nuclear polarization method increases polarization of 13C-labeled molecules, typically [1-13C]pyruvate, which can be injected into an animal during MRI scanning. Increased polarization leads to a higher observed signal, which allows for the detection and imaging of the transfer of 13C-label between the injected marker molecule, pyruvate, and its metabolic products, most importantly lactate. This information can be used to assess the metabolic status of the tumor, for example, during therapy. Here, the basic methodology and data analysis for a preclinical hyperpolarized pyruvate experiment are described.


Subject(s)
Energy Metabolism , Magnetic Resonance Imaging , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Animals , Biomarkers , Data Analysis , Disease Models, Animal , Humans , Kinetics , Lactic Acid/metabolism , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Metabolic Networks and Pathways , Models, Biological , Pyruvic Acid/metabolism
15.
Contrast Media Mol Imaging ; 2019: 5629597, 2019.
Article in English | MEDLINE | ID: mdl-31920468

ABSTRACT

Magnetic resonance imaging examinations are frequently carried out using contrast agents to improve the image quality. Practically all clinically used contrast agents are based on paramagnetic metals and lack in selectivity and specificity. A group of stable organic radicals, nitroxides, has raised interest as new metal-free contrast agents for MRI. Their structures can easily be modified to incorporate different functionalities. In the present study, a stable nitroxide TEEPO (2,2,6,6-tetraethylpiperidin-1-oxyl) was linked to a glucose moiety (Glc) to construct a water-soluble, potentially tumor-targeting compound with contrast-enhancing ability. The ability was assessed with in vivo MRI experiments. The constructed TEEPO-Glc agent proved to shorten the T 1 relaxation time in tumor, while the T 1 time in healthy brain tissue remained the same. The results indicate the potential of TEEPO-Glc as a valuable addition to the growing field of metal-free contrast enhancement in MRI-based diagnostics.


Subject(s)
Contrast Media/pharmacology , Cyclic N-Oxides/pharmacology , Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Piperidines/pharmacology , Animals , Cyclic N-Oxides/chemistry , Electron Spin Resonance Spectroscopy , HeLa Cells , Humans , Neoplasms/pathology , Piperidines/chemistry , Rats , Spin Labels
16.
Redox Biol ; 20: 1-12, 2019 01.
Article in English | MEDLINE | ID: mdl-30253279

ABSTRACT

Age-related macular degeneration (AMD) is a multi-factorial disease that is the leading cause of irreversible and severe vision loss in the developed countries. It has been suggested that the pathogenesis of dry AMD involves impaired protein degradation in retinal pigment epithelial cells (RPE). RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, DNA and lipids and evoke tissue deterioration during the aging process. The ubiquitin-proteasome pathway and the lysosomal/autophagosomal pathway are the two major proteolytic systems in eukaryotic cells. NRF-2 (nuclear factor-erythroid 2-related factor-2) and PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1 alpha) are master transcription factors in the regulation of cellular detoxification. We investigated the role of NRF-2 and PGC-1α in the regulation of RPE cell structure and function by using global double knockout (dKO) mice. The NRF-2/PGC-1α dKO mice exhibited significant age-dependent RPE degeneration, accumulation of the oxidative stress marker, 4-HNE (4-hydroxynonenal), the endoplasmic reticulum stress markers GRP78 (glucose-regulated protein 78) and ATF4 (activating transcription factor 4), and damaged mitochondria. Moreover, levels of protein ubiquitination and autophagy markers p62/SQSTM1 (sequestosome 1), Beclin-1 and LC3B (microtubule associated protein 1 light chain 3 beta) were significantly increased together with the Iba-1 (ionized calcium binding adaptor molecule 1) mononuclear phagocyte marker and an enlargement of RPE size. These histopathological changes of RPE were accompanied by photoreceptor dysmorphology and vision loss as revealed by electroretinography. Consequently, these novel findings suggest that the NRF-2/PGC-1α dKO mouse is a valuable model for investigating the role of proteasomal and autophagy clearance in the RPE and in the development of dry AMD.


Subject(s)
Genetic Predisposition to Disease , Macular Degeneration/genetics , Macular Degeneration/pathology , NF-E2-Related Factor 2/deficiency , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/deficiency , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Animals , Autophagy/genetics , Biomarkers , Disease Models, Animal , Electroretinography , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Genetic Association Studies , Immunohistochemistry , Lysosomes/metabolism , Lysosomes/ultrastructure , Macular Degeneration/diagnosis , Macular Degeneration/metabolism , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondria/ultrastructure , Molecular Imaging , Mutation , Oxidative Stress/genetics , Phenotype , Photoreceptor Cells/metabolism , Protein Aggregation, Pathological , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/ultrastructure
17.
Int J Pharm ; 554: 327-336, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30391665

ABSTRACT

The inability of traditional chemotherapeutics to reach cancer tissue reduces the treatment efficacy and leads to adverse effects. A multifunctional nanovector was developed consisting of porous silicon, superparamagnetic iron oxide, calcium carbonate, doxorubicin and polyethylene glycol. The particles integrate magnetic properties with the capacity to retain drug molecules inside the pore matrix at neutral pH to facilitate drug delivery to tumor tissues. The MRI applicability and pH controlled drug release were examined in vitro together with in-depth material characterization. The in vivo biodistribution and compound safety were verified using A549 lung cancer bearing mice before proceeding to therapeutic experiments using CT26 cancer implanted mice. Loading doxorubicin into the porous nanoparticle negated the adverse side effects encountered after intravenous administration highlighting the particles' excellent biocompatibility. Furthermore, the multifunctional nanovector induced 77% tumor reduction after intratumoral injection. The anti-tumor effect was comparable with that of free doxorubicin but with significantly alleviated unwanted effects. These results demonstrate that the developed porous silicon-based nanoparticles represent promising multifunctional drug delivery vectors for cancer monitoring and therapy.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/administration & dosage , Drug Delivery Systems , Excipients/chemistry , A549 Cells , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/toxicity , Chemistry, Pharmaceutical/methods , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Delayed-Action Preparations , Doxorubicin/pharmacokinetics , Doxorubicin/toxicity , Drug Liberation , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred NOD , Mice, SCID , Nanoparticles , Porosity , Silicon/chemistry , Tissue Distribution
18.
Front Neurosci ; 12: 668, 2018.
Article in English | MEDLINE | ID: mdl-30319344

ABSTRACT

Background: Neuroinflammation and biometal dyshomeostasis are key pathological features of several neurodegenerative diseases, including Alzheimer's disease (AD). Inflammation and biometals are linked at the molecular level through regulation of metal buffering proteins such as the metallothioneins. Even though the molecular connections between metals and inflammation have been demonstrated, little information exists on the effect of copper modulation on brain inflammation. Methods: We demonstrate the immunomodulatory potential of the copper bis(thiosemicarbazone) complex CuII(atsm) in an neuroinflammatory model in vivo and describe its anti-inflammatory effects on microglia and astrocytes in vitro. Results: By using a sophisticated in vivo magnetic resonance imaging (MRI) approach, we report the efficacy of CuII(atsm) in reducing acute cerebrovascular inflammation caused by peripheral administration of bacterial lipopolysaccharide (LPS). CuII(atsm) also induced anti-inflammatory outcomes in primary microglia [significant reductions in nitric oxide (NO), monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor (TNF)] and astrocytes [significantly reduced NO, MCP-1, and interleukin 6 (IL-6)] in vitro. These anti-inflammatory actions were associated with increased cellular copper levels and increased the neuroprotective protein metallothionein-1 (MT1) in microglia and astrocytes. Conclusion: The beneficial effects of CuII(atsm) on the neuroimmune system suggest copper complexes are potential therapeutics for the treatment of neuroinflammatory conditions.

19.
J Comp Neurol ; 525(16): 3476-3487, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28681514

ABSTRACT

A premature termination codon in the human histidine decarboxylase (Hdc) gene has been identified in a family suffering from Guilles de la Tourette syndrome (GTS). In the current study we investigated if mice lacking the histamine producing enzyme HDC share the morphological and cytological phenotype with GTS patients by using magnetic resonance (MRI) and diffusion tensor imaging (DTI), unbiased stereology and immunohistochemistry. Behavior of Hdc knock-out (Hdc KO) mice was assessed in an open field test. The results of stereological, volumetric and DTI analysis measurements showed no significant differences between control and Hdc KO mice. The numbers and distribution of GABAergic parvalbumin or nitric oxide-expressing and cholinergic interneurons were normal in Hdc KO mice. Cortical morphology and layering in adult Hdc KO mice were also preserved. In open field test Hdc KO mice showed impaired exploratory activity and habituation when introduced to novel environment. Our results indicate that Hdc deficiency in mice does not disturb the development of striatal and cortical interneurons and does not lead to the morphological and cytological phenotypes characterized by humans with GTS. Nevertheless, histamine deficiency leads to behavioral alterations probably due to neurotransmitter dysbalance on the level of the striatum.


Subject(s)
Brain/pathology , Exploratory Behavior/physiology , Histidine Decarboxylase/deficiency , Tourette Syndrome , Animals , Apoptosis Regulatory Proteins/metabolism , Brain/diagnostic imaging , Brain/metabolism , Cell Count , Choline O-Acetyltransferase/metabolism , Diffusion Tensor Imaging , Disease Models, Animal , Habituation, Psychophysiologic/genetics , Histidine Decarboxylase/genetics , Homeodomain Proteins/metabolism , Image Processing, Computer-Assisted , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Fibers/pathology , Nuclear Proteins/metabolism , Parvalbumins/metabolism , Repressor Proteins/metabolism , Tourette Syndrome/diagnostic imaging , Tourette Syndrome/genetics , Tourette Syndrome/pathology , Tourette Syndrome/physiopathology , Vesicular Glutamate Transport Protein 2/metabolism
20.
PLoS One ; 12(5): e0176528, 2017.
Article in English | MEDLINE | ID: mdl-28520730

ABSTRACT

PURPOSE: To develop an image analysis technique that distinguishes pseudoprogression from true progression by analyzing tumour heterogeneity in T2-weighted images using topological descriptors of image heterogeneity called Minkowski functionals (MFs). METHODS: Using a retrospective patient cohort (n = 50), and blinded to treatment response outcome, unsupervised feature estimation was performed to investigate MFs for the presence of outliers, potential confounders, and sensitivity to treatment response. The progression and pseudoprogression groups were then unblinded and supervised feature selection was performed using MFs, size and signal intensity features. A support vector machine model was obtained and evaluated using a prospective test cohort. RESULTS: The model gave a classification accuracy, using a combination of MFs and size features, of more than 85% in both retrospective and prospective datasets. A different feature selection method (Random Forest) and classifier (Lasso) gave the same results. Although not apparent to the reporting radiologist, the T2-weighted hyperintensity phenotype of those patients with progression was heterogeneous, large and frond-like when compared to those with pseudoprogression. CONCLUSION: Analysis of heterogeneity, in T2-weighted MR images, which are acquired routinely in the clinic, has the potential to detect an earlier treatment response allowing an early change in treatment strategy. Prospective validation of this technique in larger datasets is required.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioblastoma/diagnostic imaging , Magnetic Resonance Imaging/methods , Adolescent , Adult , Aged , Diagnosis, Differential , Female , Humans , Magnetic Resonance Imaging/standards , Male , Middle Aged , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...