Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(21): 211803, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856264

ABSTRACT

We report the first search for dark sectors performed at the NA64 experiment employing a high energy muon beam and a missing energy-momentum technique. Muons from the M2 beamline at the CERN Super Proton Synchrotron with a momentum of 160 GeV/c are directed to an active target. The signal signature consists of a single scattered muon with momentum <80 GeV/c in the final state, accompanied by missing energy, i.e., no detectable activity in the downstream calorimeters. For a total dataset of (1.98±0.02)×10^{10} muons on target, no event is observed in the expected signal region. This allows us to set new limits on the remaining (m_{Z^{'}},g_{Z^{'}}) parameter space of a new Z^{'} (L_{µ}-L_{τ}) vector boson which could explain the muon (g-2)_{µ} anomaly. Additionally, our study excludes part of the parameter space suggested by the thermal dark matter relic abundance. Our results pave the way to explore dark sectors and light dark matter with muon beams in a unique and complementary way to other experiments.

2.
Phys Rev Lett ; 131(16): 161801, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37925688

ABSTRACT

Thermal dark matter models with particle χ masses below the electroweak scale can provide an explanation for the observed relic dark matter density. This would imply the existence of a new feeble interaction between the dark and ordinary matter. We report on a new search for the sub-GeV χ production through the interaction mediated by a new vector boson, called the dark photon A^{'}, in collisions of 100 GeV electrons with the active target of the NA64 experiment at the CERN SPS. With 9.37×10^{11} electrons on target collected during 2016-2022 runs NA64 probes for the first time the well-motivated region of parameter space of benchmark thermal scalar and fermionic dark matter models. No evidence for dark matter production has been found. This allows us to set the most sensitive limits on the A^{'} couplings to photons for masses m_{A^{'}}≲0.35 GeV, and to exclude scalar and Majorana dark matter with the χ-A^{'} coupling α_{D}≤0.1 for masses 0.001≲m_{χ}≲0.1 GeV and 3m_{χ}≤m_{A^{'}}.

3.
Eur Phys J A Hadron Nucl ; 59(10): 232, 2023.
Article in English | MEDLINE | ID: mdl-37860634

ABSTRACT

The target asymmetry T, recoil asymmetry P, and beam-target double polarization observable H were determined in exclusive π0 and η photoproduction off quasi-free protons and, for the first time, off quasi-free neutrons. The experiment was performed at the electron stretcher accelerator ELSA in Bonn, Germany, with the Crystal Barrel/TAPS detector setup, using a linearly polarized photon beam and a transversely polarized deuterated butanol target. Effects from the Fermi motion of the nucleons within deuterium were removed by a full kinematic reconstruction of the final state invariant mass. A comparison of the data obtained on the proton and on the neutron provides new insight into the isospin structure of the electromagnetic excitation of the nucleon. Earlier measurements of polarization observables in the γp→π0p and γp→ηp reactions are confirmed. The data obtained on the neutron are of particular relevance for clarifying the origin of the narrow structure in the ηn system at W=1.68GeV. A comparison with recent partial wave analyses favors the interpretation of this structure as arising from interference of the S11(1535) and S11(1650) resonances within the S11-partial wave.

4.
Phys Rev Lett ; 129(16): 161801, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36306760

ABSTRACT

A search for a new Z^{'} gauge boson associated with (un)broken B-L symmetry in the keV-GeV mass range is carried out for the first time using the missing-energy technique in the NA64 experiment at the CERN SPS. From the analysis of the data with 3.22×10^{11} electrons on target collected during 2016-2021 runs, no signal events were found. This allows us to derive new constraints on the Z^{'}-e coupling strength, which, for the mass range 0.3≲m_{Z^{'}}≲100 MeV, are more stringent compared to those obtained from the neutrino-electron scattering data.

5.
Eur Phys J C Part Fields ; 81(10): 959, 2021.
Article in English | MEDLINE | ID: mdl-34790033

ABSTRACT

We report the results of a search for a new vector boson ( A ' ) decaying into two dark matter particles χ 1 χ 2 of different mass. The heavier χ 2 particle subsequently decays to χ 1 and an off-shell Dark Photon A ' ∗ → e + e - . For a sufficiently large mass splitting, this model can explain in terms of new physics the recently confirmed discrepancy observed in the muon anomalous magnetic moment at Fermilab. Remarkably, it also predicts the observed yield of thermal dark matter relic abundance. A detailed Monte-Carlo simulation was used to determine the signal yield and detection efficiency for this channel in the NA64 setup. The results were obtained re-analyzing the previous NA64 searches for an invisible decay A ' → χ χ ¯ and axion-like or pseudo-scalar particles a → γ γ . With this method, we exclude a significant portion of the parameter space justifying the muon g-2 anomaly and being compatible with the observed dark matter relic density for A ' masses from 2 m e up to 390 MeV and mixing parameter ε between 3 × 10 - 5 and 2 × 10 - 2 .

6.
Phys Rev Lett ; 126(21): 211802, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34114842

ABSTRACT

We performed a search for a new generic X boson, which could be a scalar (S), pseudoscalar (P), vector (V), or an axial vector (A) particle produced in the 100 GeV electron scattering off nuclei, e^{-}Z→e^{-}ZX, followed by its invisible decay in the NA64 experiment at CERN. No evidence for such a process was found in the full NA64 dataset of 2.84×10^{11} electrons on target. We place new bounds on the S, P, V, A coupling strengths to electrons, and set constraints on their contributions to the electron anomalous magnetic moment a_{e}, |Δa_{X}|≲10^{-15}-10^{-13} for the X mass region 1 MeV≲m_{X}≲1 GeV. These results are an order of magnitude more sensitive compared to the current accuracy on a_{e} from the electron g-2 experiments and recent high-precision determination of the fine structure constant.

7.
Eur Phys J C Part Fields ; 80(12): 1159, 2020.
Article in English | MEDLINE | ID: mdl-33343226

ABSTRACT

Recently, the ATOMKI experiment has reported new evidence for the excess of e + e - events with a mass ∼ 17 MeV in the nuclear transitions of 4 He, that they previously observed in measurements with 8 Be. These observations could be explained by the existence of a new vector X 17 boson. So far, the search for the decay X 17 → e + e - with the NA64 experiment at the CERN SPS gave negative results. Here, we present a new technique that could be implemented in NA64 aiming to improve the sensitivity and to cover the remaining X 17 parameter space. If a signal-like event is detected, an unambiguous observation is achieved by reconstructing the invariant mass of the X 17 decay with the proposed method. To reach this goal an optimization of the X 17 production target, as well as an efficient and accurate reconstruction of two close decay tracks, is required. A dedicated analysis of the available experimental data making use of the trackers information is presented. This method provides independent confirmation of the NA64 published results [1], validating the tracking procedure. The detailed Monte Carlo study of the proposed setup and the background estimate show that the goal of the proposed search is feasible.

8.
Phys Rev Lett ; 125(8): 081801, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32909809

ABSTRACT

We carried out a model-independent search for light scalar (s) and pseudoscalar axionlike (a) particles that couple to two photons by using the high-energy CERN SPS H4 electron beam. The new particles, if they exist, could be produced through the Primakoff effect in interactions of hard bremsstrahlung photons generated by 100 GeV electrons in the NA64 active dump with virtual photons provided by the nuclei of the dump. The a(s) would penetrate the downstream HCAL module, serving as a shield, and would be observed either through their a(s)→γγ decay in the rest of the HCAL detector, or as events with a large missing energy if the a(s) decays downstream of the HCAL. This method allows for the probing of the a(s) parameter space, including those from generic axion models, inaccessible to previous experiments. No evidence of such processes has been found from the analysis of the data corresponding to 2.84×10^{11} electrons on target, allowing us to set new limits on the a(s)γγ-coupling strength for a(s) masses below 55 MeV.

9.
Phys Rev Lett ; 123(12): 121801, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31633975

ABSTRACT

A search for sub-GeV dark matter production mediated by a new vector boson A^{'}, called a dark photon, is performed by the NA64 experiment in missing energy events from 100 GeV electron interactions in an active beam dump at the CERN SPS. From the analysis of the data collected in the years 2016, 2017, and 2018 with 2.84×10^{11} electrons on target no evidence of such a process has been found. The most stringent constraints on the A^{'} mixing strength with photons and the parameter space for the scalar and fermionic dark matter in the mass range ≲0.2 GeV are derived, thus demonstrating the power of the active beam dump approach for the dark matter search.

10.
Phys Rev Lett ; 122(4): 042002, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30768338

ABSTRACT

Mapping states with explicit gluonic degrees of freedom in the light sector is a challenge, and has led to controversies in the past. In particular, the experiments have reported two different hybrid candidates with spin-exotic signature, π_{1}(1400) and π_{1}(1600), which couple separately to ηπ and η^{'}π. This picture is not compatible with recent Lattice QCD estimates for hybrid states, nor with most phenomenological models. We consider the recent partial wave analysis of the η^{(')}π system by the COMPASS Collaboration. We fit the extracted intensities and phases with a coupled-channel amplitude that enforces the unitarity and analyticity of the S matrix. We provide a robust extraction of a single exotic π_{1} resonant pole, with mass and width 1564±24±86 and 492±54±102 MeV, which couples to both η^{(')}π channels. We find no evidence for a second exotic state. We also provide the resonance parameters of the a_{2}(1320) and a_{2}^{'}(1700).

11.
Phys Rev Lett ; 120(23): 231802, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29932721

ABSTRACT

We report the first results on a direct search for a new 16.7 MeV boson (X) which could explain the anomalous excess of e^{+}e^{-} pairs observed in the excited ^{8}Be^{*} nucleus decays. Because of its coupling to electrons, the X could be produced in the bremsstrahlung reaction e^{-}Z→e^{-}ZX by a 100 GeV e^{-} beam incident on an active target in the NA64 experiment at the CERN Super Proton Synchrotron and observed through the subsequent decay into a e^{+}e^{-} pair. With 5.4×10^{10} electrons on target, no evidence for such decays was found, allowing us to set first limits on the X-e^{-} coupling in the range 1.3×10^{-4}≲ε_{e}≲4.2×10^{-4} excluding part of the allowed parameter space. We also set new bounds on the mixing strength of photons with dark photons (A^{'}) from nonobservation of the decay A^{'}→e^{+}e^{-} of the bremsstrahlung A^{'} with a mass ≲23 MeV.

12.
Phys Rev Lett ; 118(1): 011802, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-28106454

ABSTRACT

We report on a direct search for sub-GeV dark photons (A^{'}), which might be produced in the reaction e^{-}Z→e^{-}ZA^{'} via kinetic mixing with photons by 100 GeV electrons incident on an active target in the NA64 experiment at the CERN SPS. The dark photons would decay invisibly into dark matter particles resulting in events with large missing energy. No evidence for such decays was found with 2.75×10^{9} electrons on target. We set new limits on the γ-A^{'} mixing strength and exclude the invisible A^{'} with a mass ≲100 MeV as an explanation of the muon g_{µ}-2 anomaly.

13.
Eur Phys J C Part Fields ; 74(10): 2981, 2014.
Article in English | MEDLINE | ID: mdl-25972760

ABSTRACT

We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.

14.
Acta Orthop Belg ; 67(5): 448-51, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11822073

ABSTRACT

A hook-plate is a clavicular small fragment AO plate with a hook engaging below the acromion. It is primarily used to secure the ligament repair in the treatment of displaced acromioclavicular joint dislocations. We have used the hook-plate in conjunction with a Weaver-Dunn procedure to secure the repair in seven patients. In another three we used this plate to reduce and stabilize distal clavicular fractures. Satisfactory results were obtained in all patients; the deformity disappeared, full pain-free shoulder movement was regained with no motor weakness, with a mean follow-up of 11 months (6-25 months). Our patients returned early to work and sports activities (mean period of three months). The three clavicular fractures healed. One patient developed a superficial would infection, which responded to antibiotics and would dressing. None of our patients required removal of the implant. The hook-plate appears to be a useful device for acromioclavicular trauma.


Subject(s)
Acromioclavicular Joint/injuries , Acromioclavicular Joint/surgery , Bone Plates , Fracture Fixation, Internal/methods , Joint Dislocations/surgery , Acromioclavicular Joint/pathology , Adult , Female , Humans , Joint Dislocations/pathology , Male , Pain , Range of Motion, Articular , Treatment Outcome
15.
Injury ; 31(9): 746-8, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11084167

ABSTRACT

Epiphyseal fractures of the distal radius are common in children but those involving the distal ulna are rare. Distal ulna epiphyseal injuries are usually Salter-Harris type II and are usually reduced closed and held in plaster to produce good results. In this paper we describe a Salter-Harris type IV injury of the distal ulna epiphysis which required open reduction and internal fixation due to soft tissue interposition.


Subject(s)
Bone Wires , Fracture Fixation, Internal/methods , Ulna Fractures/surgery , Adolescent , Casts, Surgical , Epiphyses/injuries , Humans , Male , Torsion Abnormality/surgery , Treatment Outcome , Ulna Fractures/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...