Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 38(20): e101345, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31441084

ABSTRACT

In neurons, the continuous and dynamic endoplasmic reticulum (ER) network extends throughout the axon, and its dysfunction causes various axonopathies. However, it remains largely unknown how ER integrity and remodeling modulate presynaptic function in mammalian neurons. Here, we demonstrated that ER membrane receptors VAPA and VAPB are involved in modulating the synaptic vesicle (SV) cycle. VAP interacts with secernin-1 (SCRN1) at the ER membrane via a single FFAT-like motif. Similar to VAP, loss of SCRN1 or SCRN1-VAP interactions resulted in impaired SV cycling. Consistently, SCRN1 or VAP depletion was accompanied by decreased action potential-evoked Ca2+ responses. Additionally, we found that VAP-SCRN1 interactions play an important role in maintaining ER continuity and dynamics, as well as presynaptic Ca2+ homeostasis. Based on these findings, we propose a model where the ER-localized VAP-SCRN1 interactions provide a novel control mechanism to tune ER remodeling and thereby modulate Ca2+ dynamics and SV cycling at presynaptic sites. These data provide new insights into the molecular mechanisms controlling ER structure and dynamics, and highlight the relevance of ER function for SV cycling.


Subject(s)
Calcium/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Presynaptic Terminals/physiology , Animals , Animals, Newborn , Biological Transport , Cell Membrane/metabolism , Female , HEK293 Cells , Humans , Protein Binding , Protein Interaction Domains and Motifs , Rats , Synaptic Vesicles/physiology
2.
EMBO J ; 35(11): 1236-50, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27056679

ABSTRACT

Presynaptic cannabinoid (CB1R) and metabotropic glutamate receptors (mGluR2/3) regulate synaptic strength by inhibiting secretion. Here, we reveal a presynaptic inhibitory pathway activated by extracellular signal-regulated kinase (ERK) that mediates CB1R- and mGluR2/3-induced secretion inhibition. This pathway is triggered by a variety of events, from foot shock-induced stress to intense neuronal activity, and induces phosphorylation of the presynaptic protein Munc18-1. Mimicking constitutive phosphorylation of Munc18-1 results in a drastic decrease in synaptic transmission. ERK-mediated phosphorylation of Munc18-1 ultimately leads to degradation by the ubiquitin-proteasome system. Conversely, preventing ERK-dependent Munc18-1 phosphorylation increases synaptic strength. CB1R- and mGluR2/3-induced synaptic inhibition and depolarization-induced suppression of excitation (DSE) are reduced upon ERK/MEK pathway inhibition and further reduced when ERK-dependent Munc18-1 phosphorylation is blocked. Thus, ERK-dependent Munc18-1 phosphorylation provides a major negative feedback loop to control synaptic strength upon activation of presynaptic receptors and during intense neuronal activity.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Munc18 Proteins/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptors, Metabotropic Glutamate/metabolism , Synaptic Transmission , Animals , Electric Stimulation , Embryo, Mammalian , Excitatory Postsynaptic Potentials , Female , HEK293 Cells , Hippocampus/physiology , Humans , In Vitro Techniques , Male , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Neurons/physiology , Neurons/ultrastructure , Phosphorylation , Pregnancy , Rats, Wistar , Stress, Psychological/metabolism
3.
Curr Biol ; 26(7): 849-61, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-26948876

ABSTRACT

Kinesin motor proteins play a fundamental role for normal neuronal development by controlling intracellular cargo transport and microtubule (MT) cytoskeleton organization. Regulating kinesin activity is important to ensure their proper functioning, and their misregulation often leads to severe human neurological disorders. Homozygous nonsense mutations in kinesin-binding protein (KBP)/KIAA1279 cause the neurological disorder Goldberg-Shprintzen syndrome (GOSHS), which is characterized by intellectual disability, microcephaly, and axonal neuropathy. Here, we show that KBP regulates kinesin activity by interacting with the motor domains of a specific subset of kinesins to prevent their association with the MT cytoskeleton. The KBP-interacting kinesins include cargo-transporting motors such as kinesin-3/KIF1A and MT-depolymerizing motor kinesin-8/KIF18A. We found that KBP blocks KIF1A/UNC-104-mediated synaptic vesicle transport in cultured hippocampal neurons and in C. elegans PVD sensory neurons. In contrast, depletion of KBP results in the accumulation of KIF1A motors and synaptic vesicles in the axonal growth cone. We also show that KBP regulates neuronal MT dynamics by controlling KIF18A activity. Our data suggest that KBP functions as a kinesin inhibitor that modulates MT-based cargo motility and depolymerizing activity of a subset of kinesin motors. We propose that misregulation of KBP-controlled kinesin motors may represent the underlying molecular mechanism that contributes to the neuropathological defects observed in GOSHS patients.


Subject(s)
Craniofacial Abnormalities/metabolism , Hirschsprung Disease/metabolism , Microtubules/metabolism , Nerve Tissue Proteins/metabolism , Animals , Caenorhabditis elegans/metabolism , Carrier Proteins/metabolism , Kinesins/chemistry , Kinesins/metabolism , Mice , Neurons/metabolism , Synaptic Vesicles/metabolism
4.
Front Mol Neurosci ; 8: 44, 2015.
Article in English | MEDLINE | ID: mdl-26321907

ABSTRACT

The axon is the single long fiber that extends from the neuron and transmits electrical signals away from the cell body. The neuronal cytoskeleton, composed of microtubules (MTs), actin filaments and neurofilaments, is not only required for axon formation and axonal transport but also provides the structural basis for several specialized axonal structures, such as the axon initial segment (AIS) and presynaptic boutons. Emerging evidence suggest that the unique cytoskeleton organization in the axon is essential for its structure and integrity. In addition, the increasing number of neurodevelopmental and neurodegenerative diseases linked to defect in actin- and microtubule-dependent processes emphasizes the importance of a properly regulated cytoskeleton for normal axonal functioning. Here, we provide an overview of the current understanding of actin and microtubule organization within the axon and discuss models for the functional role of the cytoskeleton at specialized axonal structures.

5.
Nature ; 505(7481): 108-11, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24240280

ABSTRACT

Botulinum neurotoxin A (BoNT/A) belongs to the most dangerous class of bioweapons. Despite this, BoNT/A is used to treat a wide range of common medical conditions such as migraines and a variety of ocular motility and movement disorders. BoNT/A is probably best known for its use as an antiwrinkle agent in cosmetic applications (including Botox and Dysport). BoNT/A application causes long-lasting flaccid paralysis of muscles through inhibiting the release of the neurotransmitter acetylcholine by cleaving synaptosomal-associated protein 25 (SNAP-25) within presynaptic nerve terminals. Two types of BoNT/A receptor have been identified, both of which are required for BoNT/A toxicity and are therefore likely to cooperate with each other: gangliosides and members of the synaptic vesicle glycoprotein 2 (SV2) family, which are putative transporter proteins that are predicted to have 12 transmembrane domains, associate with the receptor-binding domain of the toxin. Recently, fibroblast growth factor receptor 3 (FGFR3) has also been reported to be a potential BoNT/A receptor. In SV2 proteins, the BoNT/A-binding site has been mapped to the luminal domain, but the molecular details of the interaction between BoNT/A and SV2 are unknown. Here we determined the high-resolution crystal structure of the BoNT/A receptor-binding domain (BoNT/A-RBD) in complex with the SV2C luminal domain (SV2C-LD). SV2C-LD consists of a right-handed, quadrilateral ß-helix that associates with BoNT/A-RBD mainly through backbone-to-backbone interactions at open ß-strand edges, in a manner that resembles the inter-strand interactions in amyloid structures. Competition experiments identified a peptide that inhibits the formation of the complex. Our findings provide a strong platform for the development of novel antitoxin agents and for the rational design of BoNT/A variants with improved therapeutic properties.


Subject(s)
Botulinum Toxins, Type A/chemistry , Botulinum Toxins, Type A/metabolism , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Endocytosis/drug effects , HEK293 Cells , Humans , Models, Molecular , Neostriatum/cytology , Neurons/drug effects , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Structure-Activity Relationship
6.
Dev Cell ; 27(2): 145-160, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24120883

ABSTRACT

Mechanisms controlling microtubule dynamics at the cell cortex play a crucial role in cell morphogenesis and neuronal development. Here, we identified kinesin-4 KIF21A as an inhibitor of microtubule growth at the cell cortex. In vitro, KIF21A suppresses microtubule growth and inhibits catastrophes. In cells, KIF21A restricts microtubule growth and participates in organizing microtubule arrays at the cell edge. KIF21A is recruited to the cortex by KANK1, which coclusters with liprin-α1/ß1 and the components of the LL5ß-containing cortical microtubule attachment complexes. Mutations in KIF21A have been linked to congenital fibrosis of the extraocular muscles type 1 (CFEOM1), a dominant disorder associated with neurodevelopmental defects. CFEOM1-associated mutations relieve autoinhibition of the KIF21A motor, and this results in enhanced KIF21A accumulation in axonal growth cones, aberrant axon morphology, and reduced responsiveness to inhibitory cues. Our study provides mechanistic insight into cortical microtubule regulation and suggests that altered microtubule dynamics contribute to CFEOM1 pathogenesis.


Subject(s)
Eye Diseases, Hereditary/metabolism , Fibrosis/metabolism , Kinesins/metabolism , Microtubules/metabolism , Neurons/metabolism , Ocular Motility Disorders/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , COS Cells , Carrier Proteins/metabolism , Cell Line , Chlorocebus aethiops , Cytoskeletal Proteins , Eye Diseases, Hereditary/genetics , Growth Inhibitors , HEK293 Cells , HeLa Cells , Humans , Kinesins/genetics , Morphogenesis , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/cytology , Ophthalmoplegia , RNA Interference , RNA, Small Interfering , Tumor Suppressor Proteins/metabolism
7.
J Cell Biol ; 201(6): 915-28, 2013 Jun 10.
Article in English | MEDLINE | ID: mdl-23751498

ABSTRACT

The presynaptic active zone mediates synaptic vesicle exocytosis, and modulation of its molecular composition is important for many types of synaptic plasticity. Here, we identify synaptic scaffold protein liprin-α2 as a key organizer in this process. We show that liprin-α2 levels were regulated by synaptic activity and the ubiquitin-proteasome system. Furthermore, liprin-α2 organized presynaptic ultrastructure and controlled synaptic output by regulating synaptic vesicle pool size. The presence of liprin-α2 at presynaptic sites did not depend on other active zone scaffolding proteins but was critical for recruitment of several components of the release machinery, including RIM1 and CASK. Fluorescence recovery after photobleaching showed that depletion of liprin-α2 resulted in reduced turnover of RIM1 and CASK at presynaptic terminals, suggesting that liprin-α2 promotes dynamic scaffolding for molecular complexes that facilitate synaptic vesicle release. Therefore, liprin-α2 plays an important role in maintaining active zone dynamics to modulate synaptic efficacy in response to changes in network activity.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , GTP-Binding Proteins/metabolism , Guanylate Kinases/metabolism , Membrane Proteins/metabolism , Neurons/metabolism , Synaptic Transmission/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Excitatory Postsynaptic Potentials/physiology , GTP-Binding Proteins/genetics , Guanylate Kinases/genetics , Hippocampus/cytology , Membrane Proteins/genetics , Microscopy, Electron , Neuronal Plasticity/physiology , Neurons/cytology , Neurons/ultrastructure , Phenotype , Presynaptic Terminals/metabolism , Presynaptic Terminals/ultrastructure , Primary Cell Culture , Proteasome Endopeptidase Complex/metabolism , Rats , Ubiquitin/metabolism
8.
Parkinsons Dis ; 2012: 420957, 2012.
Article in English | MEDLINE | ID: mdl-22577599

ABSTRACT

Dementia is a common feature in Parkinson's disease (PD) and is considered to be the result of limbic and cortical Lewy bodies and/or Alzheimer changes. Astrogliosis may also affect the development of dementia, since it correlates well with declining cognition in Alzheimer patients. Thus, we determined whether cortical astrogliosis occurs in PD, whether it is related to dementia, and whether this is reflected by the presence of glial fibrillary acidic protein (GFAP) and vimentin in cerebrospinal fluid (CSF). We have examined these proteins by immunohistochemistry in the frontal cortex and by Western blot in CSF of cases with PD, PD with dementia (PDD), dementia with Lewy bodies (DLB) and nondemented controls. We were neither able to detect an increase in cortical astrogliosis in PD, PDD, or DLB nor could we observe a correlation between the extent of astrogliosis and the degree of dementia. The levels of GFAP and vimentin in CSF did not correlate to the extent of astrogliosis or dementia. We did confirm the previously identified positive correlation between the presence of cortical Lewy bodies and dementia in PD. In conclusion, we have shown that cortical astrogliosis is not associated with the cognitive decline in Lewy body-related dementia.

SELECTION OF CITATIONS
SEARCH DETAIL
...