Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888159

ABSTRACT

Crosstalk-oriented chemical evolution of natural products (NPs) is an efficacious strategy for generating novel skeletons through coupling reactions between NP fragments. In this study, two NOD-like receptor protein 3 (NLRP3) inflammasome inhibitors, sorbremnoids A and B (1 and 2), with unprecedented chemical architectures were identified from a fungus Penicillium citrinum. Compounds 1 and 2 exemplify rare instances of hybrid NPs formed via a major facilitator superfamily (MFS)-like enzyme by coupling reactive intermediates from two separate biosynthetic gene clusters (BGCs), pcisor and pci56. Both sorbremnoids A and B are NLRP3 inflammasome inhibitors. Sorbremnoid A demonstrated strong inhibition of IL-1ß by directly binding to the NLRP3 protein, inhibiting the assembly and activation of the NLRP3 inflammasome in vitro, with potential application in diabetic refractory wound healing through the suppression of excessive inflammatory responses. This research will inspire the development of anti-NLRP3 inflammasome agents as lead treatments and enhance knowledge pertaining to NPs derived from biosynthetic crosstalk.

2.
Cell Stress Chaperones ; 29(2): 326-337, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518861

ABSTRACT

Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of Plasmodium falciparum. Heat shock proteins (HSPs), particularly P. falciparum HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host-parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein-protein interactions crucial for malaria parasite survival and pathogenesis.


Subject(s)
Antimalarials , Malaria , Humans , Heat-Shock Proteins/metabolism , Plasmodium falciparum/metabolism , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antimalarials/chemistry , HSP70 Heat-Shock Proteins/metabolism , Protozoan Proteins/metabolism
3.
Nat Prod Rep ; 41(2): 162-207, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38285012

ABSTRACT

Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.


Subject(s)
Biological Products , Cnidaria , Animals , Biological Products/chemistry , Marine Biology , Molecular Structure , Cnidaria/chemistry , Echinodermata/chemistry , Aquatic Organisms
4.
Food Chem Toxicol ; 182: 114193, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37980979

ABSTRACT

Tartrazine (E102, FD&C Yellow 5) is a vibrant yellow azo dye added to many processed foods. The safety of this ubiquitous chemical has not been fully elucidated, and it has been linked to allergic reactions and ADHD in some individuals. In our study, bacterial species isolated from human stool decolourised tartrazine and, upon exposure to air, a purple compound formed. Tartrazine is known to undergo reduction in the gut to sulfanilic acid and 4-amino-3-carboxy-5-hydroxy-1-(4-sulfophenyl)pyrazole (SCAP). These metabolites and their derivatives are relevant to the toxicology of tartrazine. The toxicity of sulfanilic acid has been studied before, but the oxidative instability of SCAP has previously prevented full characterisation. We have verified the chemical identity of SCAP and confirmed that the purple-coloured oxidation derivative is 4-(3-carboxy-5-hydroxy-1-(4-sulfophenyl)-1H-pyrazol-4-yl)imino-5-oxo-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid (purpurazoic acid, PPA), as proposed by Westöö in 1965. A yellow derivative of SCAP is proposed to be the hydrolysed oxidation product, 4,5-dioxo-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid. SCAP and PPA are moderately toxic to human cells (IC50 89 and 78 µM against HEK-293, respectively), but had no apparent effect on Escherichia coli and Bacillus subtilis bacteria. These results prompt further analyses of the toxicology of tartrazine and its derivatives.


Subject(s)
Azo Compounds , Tartrazine , Humans , Tartrazine/toxicity , Tartrazine/chemistry , Azo Compounds/toxicity , HEK293 Cells , Oxidation-Reduction , Carboxylic Acids , Pyrazoles
5.
Front Mol Biosci ; 10: 1158912, 2023.
Article in English | MEDLINE | ID: mdl-37621993

ABSTRACT

Plasmodium falciparum is a unicellular, intracellular protozoan parasite, and the causative agent of malaria in humans, a deadly vector borne infectious disease. A key phase of malaria pathology, is the invasion of human erythrocytes, resulting in drastic remodeling by exported parasite proteins, including molecular chaperones and co-chaperones. The survival of the parasite within the human host is mediated by P. falciparum heat shock protein 70s (PfHsp70s) and J domain proteins (PfJDPs), functioning as chaperones-co-chaperones partnerships. Two complexes have been shown to be important for survival and pathology of the malaria parasite: PfHsp70-x-PFE0055c (exported); and PfHsp70-2-PfSec63 (endoplasmic reticulum). Virtual screening was conducted on the drug repurposing library, the Pandemic Response Box, to identify small-molecules that could specifically disrupt these chaperone complexes. Five top ranked compounds possessing preferential binding affinity for the malarial chaperone system compared to the human system, were identified; three top PfHsp70-PfJDP binders, MBX 1641, zoliflodacin and itraconazole; and two top J domain binders, ezetimibe and a benzo-diazepinone. These compounds were validated by repeat molecular dockings and molecular dynamics simulation, resulting in all the compounds, except for MBX 1461, being confirmed to bind preferentially to the malarial chaperone system. A detailed contact analysis of the PfHsp70-PfJDP binders identified two different types of modulators, those that potentially inhibit complex formation (MBX 1461), and those that potentially stabilize the complex (zoliflodacin and itraconazole). These data suggested that zoliflodacin and itraconazole are potential novel modulators specific to the malarial system. A detailed contact analysis of the J domain binders (ezetimibe and the benzo-diazepinone), revealed that they bound with not only greater affinity but also a better pose to the malarial J domain compared to that of the human system. These data suggested that ezetimibe and the benzo-diazepinone are potential specific inhibitors of the malarial chaperone system. Both itraconazole and ezetimibe are FDA-approved drugs, possess anti-malarial activity and have recently been repurposed for the treatment of cancer. This is the first time that such drug-like compounds have been identified as potential modulators of PfHsp70-PfJDP complexes, and they represent novel candidates for validation and development into anti-malarial drugs.

6.
Metabolomics ; 19(8): 69, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37530897

ABSTRACT

INTRODUCTION: Metabolomics produces vast quantities of data but determining which metabolites are the most relevant to the disease or disorder of interest can be challenging. OBJECTIVES: This study sought to demonstrate how behavioral models of psychiatric disorders can be combined with metabolomics research to overcome this limitation. METHODS: We designed a preclinical, untargeted metabolomics procedure, that focuses on the determination of central metabolites relevant to substance use disorders that are (a) associated with changes in behavior produced by acute drug exposure and (b) impacted by repeated drug exposure. Untargeted metabolomics analysis was carried out on liquid chromatography-mass spectrometry data obtained from 336 microdialysis samples. Samples were collected from the medial striatum of male Sprague-Dawley (N = 21) rats whilst behavioral data were simultaneously collected as part of a (±)-3,4-methylenedioxymethamphetamine (MDMA)-induced behavioral sensitization experiment. Analysis was conducted by orthogonal partial least squares, where the Y variable was the behavioral data, and the X variables were the relative concentrations of the 737 detected features. RESULTS: MDMA and its derivatives, serotonin, and several dopamine/norepinephrine metabolites were the greatest predictors of acute MDMA-produced behavior. Subsequent univariate analyses showed that repeated MDMA exposure produced significant changes in MDMA metabolism, which may contribute to the increased abuse liability of the drug as a function of repeated exposure. CONCLUSION: These findings highlight how the inclusion of behavioral data can guide metabolomics data analysis and increase the relevance of the results to the phenotype of interest.


Subject(s)
N-Methyl-3,4-methylenedioxyamphetamine , Rats , Male , Animals , N-Methyl-3,4-methylenedioxyamphetamine/metabolism , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Metabolomics/methods , Rats, Sprague-Dawley , Serotonin , Dopamine/metabolism
7.
Nat Prod Rep ; 40(2): 275-325, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36786022

ABSTRACT

Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.


Subject(s)
Biological Products , Cnidaria , Animals , Biological Products/chemistry , Marine Biology , Molecular Structure , Cnidaria/chemistry , Echinodermata/chemistry , Aquatic Organisms
8.
J Nat Prod ; 86(3): 526-532, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36795480

ABSTRACT

Here we describe the isolation and characterization of stictamycin, a new aromatic polyketide with activity against Staphylococcus aureus. Stictamycin was identified following metabolic profiling and bioactivity guided fractionation of organic extracts from Streptomyces sp. 438-3, an isolate from the New Zealand lichen Sticta felix. Comprehensive 1D and 2D NMR analyses were performed to determine the planar structure of stictamycin and relative configurations of stereo centers, with subsequent comparison of experimental and theoretical ECD spectra allowing elucidation of the absolute configuration. Whole-genome sequencing and biosynthetic gene cluster (BGC) analysis revealed that the Streptomyces sp. 438-3 strain contains an atypical type II polyketide (T2PKS) BGC capable of assembling polycyclic-aromatic ring skeletons. Cloning and knockout studies of this T2PKS BGC were used to confirm that it is responsible for the biosynthesis of stictamycin and elucidate a plausible biosynthetic scheme.


Subject(s)
Lichens , Polyketides , Streptomyces , Streptomyces/chemistry , Polyketides/chemistry , Lichens/genetics , Anti-Bacterial Agents/chemistry , New Zealand , Multigene Family
9.
Toxicol Rep ; 9: 1198-1203, 2022.
Article in English | MEDLINE | ID: mdl-36518459

ABSTRACT

The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor thought to mediate a number of physiological roles in the body, is becoming a target of interest for the development of new therapeutics. However, previous research has demonstrated that the downstream effects of AhR ligands cannot be predicted based simply on whether a ligand acts as an agonist or antagonist and the persistence of AhR signaling is thought to be a key determining feature. The current study investigated the AhR activity of four halogenated indoles isolated from the New Zealand red alga, Rhodophyllis membranacea: 4,7-dibromo-2,3-dichloroindole (4DBDCI), 7-bromo-2,3-dichloro-6-iodoindole (BDCII), 6,7-dibromo-2,3-dichloroindole (6DBDCI) and 2,6,7-tribromo-3-chloroindole (TBCI). Their ability to activate AhR signaling, measured as CYP1A1 activity via the ethoxyresorufin O-deethylase (EROD) assay, was determined in human HepG2, mouse Hepa1c1c7 and rat H4IIE liver cancer cells. All four compounds induced CYP1A1 activity in HepG2 cells, suggesting they all acted as AhR agonizts. 4DBDCI was particularly efficacious, inducing an 11-fold increase. Hepa1c1c7 and H4IIE cells, however, were generally less responsive to the halogenated indoles. All four compounds were persistent AhR agonizts, inducing peak CYP1A1 activity after 72 h. Moreover, the 2,3,6,7-substituted BDCII, 6DBDCI and TBCI, but not 4DBDCI, competed with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for AhR binding as observed by the inhibition of TCDD-induced CYP1A1 activity. Overall, the current study has characterized four previously untested AhR ligands, highlighting differences in species sensitivity and persistence of signaling to provide a framework for their potential future use.

10.
Behav Brain Res ; 430: 113936, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35605796

ABSTRACT

MDMA is a non-selective monoamine releasing stimulant with potent serotonergic effects - a pharmacological effect not typically associated with drugs of misuse or efficacious reinforcers. Nonetheless, MDMA is misused by humans and self-administered by laboratory animals. We have previously shown that repeated exposure to MDMA sensitized both the locomotor activating and reinforcing effects of MDMA in rats. Because repeated MDMA exposure often results in decreased markers of serotonin neurotransmission, it is possible that this might underlie the sensitizing effects of MDMA. This was examined in the current study. Male Sprague-Dawley rats were stereotaxically implanted with guide cannula in the medial striatum. They were then pre-treated with saline (n =  11) or MDMA (10 mg/kg, i.p.; n =  10), once daily for five days. Two-days later, all rats received ascending doses of MDMA (0.0, 5.0, 10.0, mg/kg, i.p.) administered at 2 hr intervals, during which locomotor activity was measured and microdialysis samples were collected. Microdialysates were analyzed using liquid chromatography-mass spectrometry and the concentrations of serotonin and MDMA were quantified. Acute MDMA administration produced dose-dependent increases in locomotor activity, which was significantly enhanced by MDMA pre-treatment. Acute MDMA also produced dose-dependent increases in medial-striatal serotonin and MDMA, but this was not impacted by MDMA pre-treatment. These results suggest that the sensitizing effects of MDMA are not due to changes in MDMA-produced synaptic overflow of serotonin in the medial striatum or the absorption/elimination of systemically administered MDMA. More likely candidates are alterations in serotonin receptor mechanisms and/or dopamine neurotransmission following repeated exposure.


Subject(s)
N-Methyl-3,4-methylenedioxyamphetamine , Serotonin , Animals , Dopamine/pharmacology , Male , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Rats , Rats, Sprague-Dawley , Serotonin Agents/pharmacology
11.
Nat Prod Rep ; 39(6): 1122-1171, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35201245

ABSTRACT

Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.


Subject(s)
Biological Products , Bryozoa , Cnidaria , Animals , Aquatic Organisms , Biological Products/chemistry , Bryozoa/chemistry , Cnidaria/chemistry , Marine Biology , Molecular Structure
12.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34725148

ABSTRACT

The leaf homogenate of Psychotria insularum is widely used in Samoan traditional medicine to treat inflammation associated with fever, body aches, swellings, wounds, elephantiasis, incontinence, skin infections, vomiting, respiratory infections, and abdominal distress. However, the bioactive components and underlying mechanisms of action are unknown. We used chemical genomic analyses in the model organism Saccharomyces cerevisiae (baker's yeast) to identify and characterize an iron homeostasis mechanism of action in the traditional medicine as an unfractionated entity to emulate its traditional use. Bioactivity-guided fractionation of the homogenate identified two flavonol glycosides, rutin and nicotiflorin, each binding iron in an ion-dependent molecular networking metabolomics analysis. Translating results to mammalian immune cells and traditional application, the iron chelator activity of the P. insularum homogenate or rutin decreased proinflammatory and enhanced anti-inflammatory cytokine responses in immune cells. Together, the synergistic power of combining traditional knowledge with chemical genomics, metabolomics, and bioassay-guided fractionation provided molecular insight into a relatively understudied Samoan traditional medicine and developed methodology to advance ethnobotany.


Subject(s)
Anti-Inflammatory Agents/analysis , Flavonoids/isolation & purification , Iron Chelating Agents/analysis , Phenols/isolation & purification , Psychotria/chemistry , Rutin/isolation & purification , Animals , Drug Evaluation, Preclinical , Ethnobotany , Female , Genomics , Male , Medicine, Traditional , Metabolomics , Mice, Inbred C57BL , Plants, Medicinal/chemistry , Saccharomyces cerevisiae , Samoa
13.
J Nat Prod ; 84(9): 2536-2543, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34490774

ABSTRACT

The skyllamycins are a class of heavily modified, non-ribosomal peptides, first isolated from Streptomyces sp. KY11784. A Streptomyces strain with potent antibiotic activity against Bacillus subtilis was isolated from a sample of the New Zealand lichen Pseudocyphellaria dissimilis. Whole genome sequencing and biosynthetic gene cluster genetic analysis coupled with GNPS LCMS/MS molecular networking revealed that this strain had the capacity to produce skyllamycins, including previously undescribed congeners, and that these were likely the source of the observed biological activity. Guided by the results of the molecular networking, we isolated the previously reported skyllamycins A-C (1-3), along with two new congeners, skyllamycins D (4) and E (5). The structures of these compounds were elucidated using comprehensive 1D and 2D NMR analyses, along with HRESIMS fragmentation experiments. Antibacterial assays revealed that skyllamycin D possessed improved activity against B. subtilis E168 compared to previously reported congeners.


Subject(s)
Anti-Bacterial Agents/pharmacology , Depsipeptides/pharmacology , Streptomyces/chemistry , Anti-Bacterial Agents/isolation & purification , Bacillus subtilis/drug effects , Depsipeptides/isolation & purification , Lichens/microbiology , Molecular Structure , New Zealand , Peptides, Cyclic
14.
FEMS Microbiol Lett ; 368(17)2021 09 08.
Article in English | MEDLINE | ID: mdl-34448862

ABSTRACT

Phytophthora diseases cause devastation to crops and native ecosystems worldwide. In New Zealand, Phytophthora agathidicida is threatening the survival of kauri, an endemic, culturally and ecologically important tree species. The current method for detecting P. agathidicida is a soil bating assay that is time-consuming and requires high levels of expertise to assess, thus limiting the analytical sample throughput. Here, we characterized the fatty acid methyl ester (FAME) profile of P. agathidicida. We also compared it with the FAME profile of P. cinnamomi and assessed the efficacy of FAME analysis as a diagnostic tool for detecting the pathogen in soil samples. In FAME analysis, the total fatty acid content is isolated from a sample and converted to FAMEs for analysis, a process that takes less than a day. Unique fatty acid acyl chains can serve as biomarkers for specific organisms. We detected 12 fatty acids in P. agathidicida, two of which (20:4ω6 and 20:5ω3) show promise as potential Phytophthora specific biomarkers. Collectively, these findings advance our fundamental understanding of P. agathidicida biology and provide a promising technique to increase the rate of sample processing and the speed of pathogen detection for P. agathidicida in soil.


Subject(s)
Esters , Phytophthora , Ecosystem , Esters/analysis , Fatty Acids/chemistry , Phytophthora/chemistry , Phytophthora/classification , Plant Diseases/microbiology , Soil
15.
RSC Chem Biol ; 2(2): 556-567, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34458799

ABSTRACT

Bacterial natural products have been a rich source of bioactive compounds for drug development, and advances in DNA sequencing, informatics and molecular biology have opened new avenues for their discovery. Here, we describe the isolation of an aureolic acid biosynthetic gene cluster from a metagenome library derived from a New Zealand soil sample. Heterologous expression of this pathway in Streptomyces albus resulted in the production and isolation of two new aureolic acid compounds, one of which (metathramycin, 6) possesses potent bioactivity against a human colon carcinoma cell line (HCT-116, IC50 = 14.6 nM). As metathramycin was a minor constituent of the fermentation extract, its discovery relied on a combination of approaches including bioactivity guided fractionation, MS/MS characterisation and pathway engineering. This study not only demonstrates the presence of previously uncharacterised aureolic acids in the environment, but also the value of an integrated natural product discovery approach which may be generally applicable to low abundance bioactive metabolites.

16.
Molecules ; 26(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34361690

ABSTRACT

The islands of the South Pacific Ocean have been in the limelight for natural product biodiscovery, due to their unique and pristine tropical waters and environment. The Kingdom of Tonga is an archipelago in the central Indo-Pacific Ocean, consisting of 176 islands, 36 of which are inhabited, flourishing with a rich diversity of flora and fauna. Many unique natural products with interesting bioactivities have been reported from Indo-Pacific marine sponges and other invertebrate phyla; however, there have not been any reviews published to date specifically regarding natural products from Tongan marine organisms. This review covers both known and new/novel Marine Natural Products (MNPs) and their biological activities reported from organisms collected within Tongan territorial waters up to December 2020, and includes 109 MNPs in total, the majority from the phylum Porifera. The significant biological activity of these metabolites was dominated by cytotoxicity and, by reviewing these natural products, it is apparent that the bulk of the new and interesting biologically active compounds were from organisms collected from one particular island, emphasizing the geographic variability in the chemistry between these organisms collected at different locations.


Subject(s)
Aquatic Organisms/metabolism , Biological Products/analysis , Drug Discovery/methods , Porifera/metabolism , Secondary Metabolism/physiology , Animals , Aquatic Organisms/chemistry , Biodiversity , Pacific Ocean , Porifera/chemistry , Tonga , Tropical Climate
17.
J Microbiol Methods ; 188: 106271, 2021 09.
Article in English | MEDLINE | ID: mdl-34146605

ABSTRACT

Microbial biodiversity monitoring through the analysis of DNA extracted from environmental samples is increasingly popular because it is perceived as being rapid, cost-effective, and flexible concerning the sample types studied. DNA can be extracted from diverse media before high-throughput sequencing of the prokaryotic 16S rRNA gene is used to characterize the taxonomic diversity and composition of the sample (known as metabarcoding). While sources of bias in metabarcoding methodologies are widely acknowledged, previous studies have focused mainly on the effects of these biases within a single substrate type, and relatively little is known of how these vary across substrates. We investigated the effect of substrate type (water, microbial mats, lake sediments, stream sediments, soil and a mock microbial community) on the relative performance of DNA metabarcoding in parallel with phospholipid fatty acid (PLFA) analysis. Quantitative estimates of the biomass of different taxonomic groups in samples were made through the analysis of PLFAs, and these were compared to the relative abundances of microbial taxa estimated from metabarcoding. Furthermore, we used the PLFA-based quantitative estimates of the biomass to adjust relative abundances of microbial groups determined by metabarcoding to provide insight into how the biomass of microbial taxa from PLFA analysis can improve understanding of microbial communities from environmental DNA samples. We used two sets of PLFA biomarkers that differed in their number of PLFAs to evaluate how PLFA biomarker selection influences biomass estimates. Metabarcoding and PLFA analysis provided significantly different views of bacterial composition, and these differences varied among substrates. We observed the most notable differences for the Gram-negative bacteria, which were overrepresented by metabarcoding in comparison to PLFA analysis. In contrast, the relative biomass and relative sequence abundances aligned reasonably well for Cyanobacteria across the tested freshwater substrates. Adjusting relative abundances of microbial taxa estimated by metabarcoding with PLFA-based quantification estimates of the microbial biomass led to significant changes in the microbial community compositions in all substrates. We recommend including independent estimates of the biomass of microbial groups to increase comparability among metabarcoding libraries from environmental samples, especially when comparing communities associated with different substrates.


Subject(s)
Bacteria/genetics , Environmental Monitoring/methods , Fatty Acids/analysis , Phospholipids/analysis , RNA, Ribosomal, 16S/genetics , Biodiversity , Biomass , Cost-Benefit Analysis , Fresh Water/microbiology , Geologic Sediments/microbiology , High-Throughput Nucleotide Sequencing/methods , Soil , Soil Microbiology
18.
Nat Commun ; 12(1): 3147, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34035284

ABSTRACT

Although the nucleophilic alkylation of aromatics has recently been achieved with a variety of potent main group reagents, all of this reactivity is limited to a stoichiometric regime. We now report that the ytterbium(II) hydride, [BDIDippYbH]2 (BDIDipp = CH[C(CH3)NDipp]2, Dipp = 2,6-diisopropylphenyl), reacts with ethene and propene to provide the ytterbium(II) n-alkyls, [BDIDippYbR]2 (R = Et or Pr), both of which alkylate benzene at room temperature. Density functional theory (DFT) calculations indicate that this latter process operates through the nucleophilic (SN2) displacement of hydride, while the resultant regeneration of [BDIDippYbH]2 facilitates further reaction with ethene or propene and enables the direct catalytic (anti-Markovnikov) hydroarylation of both alkenes with a benzene C-H bond.

19.
Sci Rep ; 11(1): 2966, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536582

ABSTRACT

Multiple sclerosis is a disease characterised by axonal demyelination in the central nervous system (CNS). The atypical antipsychotic drug clozapine attenuates experimental autoimmune encephalomyelitis (EAE), a mouse model used to study multiple sclerosis, but the precise mechanism is unknown and could include both peripheral and CNS-mediated effects. To better understand where clozapine exerts its protective effects, we investigated the tissue distribution and localisation of clozapine using matrix-assisted laser desorption ionization imaging mass spectrometry and liquid chromatography-mass spectrometry. We found that clozapine was detectable in the brain and enriched in specific brain regions (cortex, thalamus and olfactory bulb), but the distribution was not altered by EAE. Furthermore, although not altered in other organs, clozapine levels were significantly elevated in serum during EAE. Because clozapine antagonises dopamine receptors, we analysed dopamine levels in serum and brain as well as dopamine receptor expression on brain-resident and infiltrating immune cells. While neither clozapine nor EAE significantly affected dopamine levels, we observed a significant downregulation of dopamine receptors 1 and 5 and up-regulation of dopamine receptor 2 on microglia and CD4+-infiltrating T cells during EAE. Together these findings provide insight into how neuroinflammation, as modelled by EAE, alters the distribution and downstream effects of clozapine.


Subject(s)
Clozapine/pharmacokinetics , Dopamine/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Multiple Sclerosis/drug therapy , Receptors, Dopamine/metabolism , Animals , Antipsychotic Agents , Brain/drug effects , Brain/metabolism , Brain/pathology , CD4-Positive T-Lymphocytes/metabolism , Clozapine/administration & dosage , Dopamine/blood , Down-Regulation/drug effects , Encephalomyelitis, Autoimmune, Experimental/blood , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Mice , Microglia/metabolism , Microglia/pathology , Multiple Sclerosis/blood , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Myelin-Oligodendrocyte Glycoprotein/administration & dosage , Myelin-Oligodendrocyte Glycoprotein/immunology , Tissue Distribution , Up-Regulation/drug effects
20.
Nat Prod Rep ; 38(2): 362-413, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33570537

ABSTRACT

This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.


Subject(s)
Aquatic Organisms/chemistry , Biological Products/chemistry , Biological Products/pharmacology , Animals , Bacteria/chemistry , Bryozoa/chemistry , Cnidaria/chemistry , Echinodermata/chemistry , Fungi/chemistry , Molecular Structure , Mollusca/chemistry , Phytoplankton/chemistry , Rhodophyta/chemistry , Urochordata/chemistry , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...