Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 7(21): 6608-6623, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37450380

ABSTRACT

Myelodysplastic syndromes (MDSs) are a heterogenous group of diseases affecting the hematopoietic stem cell that are curable only by stem cell transplantation. Both hematopoietic cell intrinsic changes and extrinsic signals from the bone marrow (BM) niche seem to ultimately lead to MDS. Animal models of MDS indicate that alterations in specific mesenchymal progenitor subsets in the BM microenvironment can induce or select for abnormal hematopoietic cells. Here, we identify a subset of human BM mesenchymal cells marked by the expression of CD271, CD146, and CD106. This subset of human mesenchymal cells is comparable with mouse mesenchymal cells that, when perturbed, result in an MDS-like syndrome. Its transcriptional analysis identified Osteopontin (SPP1) as the most overexpressed gene. Selective depletion of Spp1 in the microenvironment of the mouse MDS model, Vav-driven Nup98-HoxD13, resulted in an accelerated progression as demonstrated by increased chimerism, higher mutant myeloid cell burden, and a more pronounced anemia when compared with that in wild-type microenvironment controls. These data indicate that molecular perturbations can occur in specific BM mesenchymal subsets of patients with MDS. However, the niche adaptations to dysplastic clones include Spp1 overexpression that can constrain disease fitness and potentially progression. Therefore, niche changes with malignant disease can also serve to protect the host.


Subject(s)
Bone Marrow , Myelodysplastic Syndromes , Humans , Mice , Animals , Bone Marrow/pathology , Myelodysplastic Syndromes/genetics , Hematopoietic Stem Cells/metabolism , Bone Marrow Cells/metabolism , Disease Models, Animal , Disease Progression
2.
Blood Adv ; 6(17): 5072-5084, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35793392

ABSTRACT

Genome-wide CRISPR screens have been extremely useful in identifying therapeutic targets in diverse cancers by defining genes that are essential for malignant growth. However, most CRISPR screens were performed in vitro and thus cannot identify genes that are essential for interactions with the microenvironment in vivo. Here, we report genome-wide CRISPR screens in 2 in vivo murine models of acute myeloid leukemia (AML) driven by the KMT2A/MLLT3 fusion or by the constitutive coexpression of Hoxa9 and Meis1. Secondary validation using a focused library identified 72 genes specifically essential for leukemic growth in vivo, including components of the major histocompatibility complex class I complex, Cd47, complement receptor Cr1l, and the ß-4-galactosylation pathway. Importantly, several of these in vivo-specific hits have a prognostic effect or are inferred to be master regulators of protein activity in human AML cases. For instance, we identified Fermt3, a master regulator of integrin signaling, as having in vivo-specific dependency with high prognostic relevance. Overall, we show an experimental and computational pipeline for genome-wide functional screens in vivo in AML and provide a genome-wide resource of essential drivers of leukemic growth in vivo.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Leukemia, Myeloid, Acute , Animals , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Signal Transduction , Tumor Microenvironment/genetics
3.
Cell Stem Cell ; 28(12): 2090-2103.e9, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34551362

ABSTRACT

Extracellular vesicles (EVs) transfer complex biologic material between cells. However, the role of this process in vivo is poorly defined. Here, we demonstrate that osteoblastic cells in the bone marrow (BM) niche elaborate extracellular vesicles that are taken up by hematopoietic progenitor cells in vivo. Genotoxic or infectious stress rapidly increased stromal-derived extracellular vesicle transfer to granulocyte-monocyte progenitors. The extracellular vesicles contained processed tRNAs (tiRNAs) known to modulate protein translation. 5'-ti-Pro-CGG-1 was preferentially abundant in osteoblast-derived extracellular vesicles and, when transferred to granulocyte-monocyte progenitors, increased protein translation, cell proliferation, and myeloid differentiation. Upregulating EV transfer improved hematopoietic recovery from genotoxic injury and survival from fungal sepsis. Therefore, EV-mediated tiRNA transfer provides a stress-modulated signaling axis in the BM niche distinct from conventional cytokine-driven stress responses.


Subject(s)
Extracellular Vesicles , Hematopoietic Stem Cells , Bone Marrow , Bone Marrow Cells , Hematopoiesis
4.
Exp Hematol ; 49: 68-72, 2017 05.
Article in English | MEDLINE | ID: mdl-28043821

ABSTRACT

Sharing reagents is of self-evident value in life science research, however, primary cell populations often do not cryopreserve well or can require extensive preparation by collaborators, making shipping difficult. Here we report an evaluation of different conditions for the storage shipment of mouse bone marrow (BM) cells that would best preserve the number, viability, and frequency of different hematopoietic lineages, as well as functionality of progenitor populations. Bones were either crushed to release BM cells or stored intact in one of three media: Phosphate buffered saline (PBS) supplemented with 2% fetal bovine serum (FBS), Plasmalyte, or RPMI at 4°C. Cell numbers, viability, phenotype, and functionality were assessed 16 hours and 40 hours later and compared to freshly prepared samples. Whereas BM cells stored in suspension for 16 hours and BM cells kept in bone for 40 hours suffered major losses in cell number, hematopoietic lineages that were kept in the bone for 16 hours had only minor differences compared to fresh cells. With no significant differences among the different media used, intact long bones stored in media, Plasmalyte, or PBS 2% FBS for up to 16 hours provided a reasonable means of preserving bone marrow cell populations.


Subject(s)
Bone Marrow , Culture Media , Hematopoietic Stem Cells , Specimen Handling/methods , Tissue Preservation/methods , Animals , Cattle , Cell Survival , Mice
5.
Cell ; 167(1): 171-186.e15, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27641501

ABSTRACT

While acute myeloid leukemia (AML) comprises many disparate genetic subtypes, one shared hallmark is the arrest of leukemic myeloblasts at an immature and self-renewing stage of development. Therapies that overcome differentiation arrest represent a powerful treatment strategy. We leveraged the observation that the majority of AML, despite their genetically heterogeneity, share in the expression of HoxA9, a gene normally downregulated during myeloid differentiation. Using a conditional HoxA9 model system, we performed a high-throughput phenotypic screen and defined compounds that overcame differentiation blockade. Target identification led to the unanticipated discovery that inhibition of the enzyme dihydroorotate dehydrogenase (DHODH) enables myeloid differentiation in human and mouse AML models. In vivo, DHODH inhibitors reduced leukemic cell burden, decreased levels of leukemia-initiating cells, and improved survival. These data demonstrate the role of DHODH as a metabolic regulator of differentiation and point to its inhibition as a strategy for overcoming differentiation blockade in AML.


Subject(s)
Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Molecular Targeted Therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Differentiation , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , High-Throughput Screening Assays , Homeodomain Proteins/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Myeloid Cells/pathology , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Pyrimidines/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/isolation & purification , Small Molecule Libraries/therapeutic use , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...