Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37513137

ABSTRACT

Modern heat-conducting materials require special attention to analyze their thermophysical properties. Compared to classical methods, thermal lens spectrometry (TLS) has advantages due to its high sensitivity to physical and chemical composition. To avoid a systematic error in the analysis of complex systems, it is necessary to realize the limits of the applicability of the method. This study considers the features of thermal-diffusivity measurements by TLS in the stationary state for dispersed systems with absorbances up to 0.05. The limits of applicability of the method in analyzing heterogeneous systems are shown, and a mathematical apparatus is proposed for indicating a systematic error in finding thermal diffusivity that does not exceed 1%. Graphene oxide (GO), which has attractive physicochemical properties, was used as the object of analysis. GO belongs to 2D objects, the study of which requires highly sensitive methods and special attention when discussing the results. The thermophysical properties of aqueous dispersions of graphene oxide in a wide range of concentrations (up to 2 g/L) and lateral sizes (up to 4 µm) were studied by TLS. It has been found that with increasing nanophase concentration, the thermal diffusivity of graphene oxide dispersions passes through a minimum, which can be used in solving thermal insulation problems. It has been established that prolonged laser irradiation of the dispersion leads to a change in thermal diffusivity, which indicates the photochemical reduction of graphene oxide.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36985901

ABSTRACT

The growing interest in heat-conducting nanofluids requires highly sensitive methods for analyzing the thermal properties. Thermal lens spectrometry (TLS), despite its advantages over classical methods, does not have a general approach for measuring and interpreting results for dispersed systems. In this paper, for nanofluids of silicon oxide in water in a wide range of concentrations and sizes, the selection of measurement parameters for transient and steady-state thermal lensing is justified, and the interpretation of the results of thermal diffusivity measurements is substantiated. The features of the measurements of thermal diffusivity by TLS under stationary states for dispersed systems are considered. Using this approach, it is possible to detect and distinguish thermal effects with high accuracy. For dispersions of silicon oxide, with increasing concentrations, the thermal diffusivity passes through a minimum threshold. Silicon oxide dispersions can be used both as coolants or as heat-removing liquids by selecting the particle size and concentration.

3.
Int J Mol Sci ; 24(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36901910

ABSTRACT

Nanoplatforms applied for the loading of anticancer drugs is a cutting-edge approach for drug delivery to tumors and reduction of toxic effects on healthy cells. In this study, we describe the synthesis and compare the sorption properties of four types of potential doxorubicin-carriers, in which iron oxide nanoparticles (IONs) are functionalized with cationic (polyethylenimine, PEI), anionic (polystyrenesulfonate, PSS), and nonionic (dextran) polymers, as well as with porous carbon. The IONs are thoroughly characterized by X-ray diffraction, IR spectroscopy, high resolution TEM (HRTEM), SEM, magnetic susceptibility, and the zeta-potential measurements in the pH range of 3-10. The degree of doxorubicin loading at pH 7.4, as well as the degree of desorption at pH 5.0, distinctive to cancerous tumor environment, are measured. Particles modified with PEI were shown to exhibit the highest loading capacity, while the greatest release at pH 5 (up to 30%) occurs from the surface of magnetite decorated with PSS. Such a slow release of the drug would imply a prolonged tumor-inhibiting action on the affected tissue or organ. Assessment of the toxicity (using Neuro2A cell line) for PEI- and PSS-modified IONs showed no negative effect. In conclusion, the preliminary evaluation of the effects of IONs coated with PSS and PEI on the rate of blood clotting was carried out. The results obtained can be taken into account when developing new drug delivery platforms.


Subject(s)
Doxorubicin , Neoplasms , Humans , Doxorubicin/pharmacology , Drug Delivery Systems/methods , Neoplasms/metabolism , Magnetic Iron Oxide Nanoparticles , Ions/therapeutic use
4.
Nanomaterials (Basel) ; 13(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36770391

ABSTRACT

Thermal-lens spectrometry is a sensitive technique for determination of physicochemical properties and thermophysical parameters of various materials including heterogeneous systems and nanoparticles. In this paper, we consider the issues of the correctness (trueness) of measurements of the characteristic time of the thermal-lens effect and, thus, of the thermal diffusivity determined by dual-beam mode-mismatching thermal lensing. As sources of systematic errors, major factors-radiation sources, sample-cell and detector parameters, and general measurement parameters-are considered using several configurations of the thermal-lens setups, and their contributions are quantified or estimated. Furthermore, with aqueous ferroin and Sudan I in ethanol as inert colorants, the effects of the intermolecular distance of the absorbing substance on the correctness of finding the thermophysical parameters are considered. The recommendations for checking the operation of the thermal-lens setup to ensure the maximum accuracy are given. The results obtained help reducing the impact of each investigated factor on the value of systematic error and correctly measure the thermophysical parameters using thermal-lens spectrometry.

SELECTION OF CITATIONS
SEARCH DETAIL