Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Aging Cell ; : e14165, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757355

ABSTRACT

Impaired mitochondrial function is a hallmark of aging and a major contributor to neurodegenerative diseases. We have shown that disrupted mitochondrial dynamics typically found in aging alters the fate of neural stem cells (NSCs) leading to impairments in learning and memory. At present, little is known regarding the mechanisms by which neural stem and progenitor cells survive and adapt to mitochondrial dysfunction. Using Opa1-inducible knockout as a model of aging and neurodegeneration, we identify a decline in neurogenesis due to impaired stem cell activation and progenitor proliferation, which can be rescued by the mitigation of oxidative stress through hypoxia. Through sc-RNA-seq, we identify the ATF4 pathway as a critical mechanism underlying cellular adaptation to metabolic stress. ATF4 knockdown in Opa1-deficient NSCs accelerates cell death, while the increased expression of ATF4 enhances proliferation and survival. Using a Slc7a11 mutant, an ATF4 target, we show that ATF4-mediated glutathione production plays a critical role in maintaining NSC survival and function under stress conditions. Together, we show that the activation of the integrated stress response (ISR) pathway enables NSCs to adapt to metabolic stress due to mitochondrial dysfunction and metabolic stress and may serve as a therapeutic target to enhance NSC survival and function in aging and neurodegeneration.

2.
Stem Cell Reports ; 19(5): 673-688, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38579709

ABSTRACT

Maintenance of mitochondrial function plays a crucial role in the regulation of muscle stem cell (MuSC), but the underlying mechanisms remain ill defined. In this study, we monitored mitophagy in MuSCS under various myogenic states and examined the role of PINK1 in maintaining regenerative capacity. Results indicate that quiescent MuSCs actively express mitophagy genes and exhibit a measurable mitophagy flux and prominent mitochondrial localization to autophagolysosomes, which become rapidly decreased during activation. Genetic disruption of Pink1 in mice reduces PARKIN recruitment to mitochondria and mitophagy in quiescent MuSCs, which is accompanied by premature activation/commitment at the expense of self-renewal and progressive loss of muscle regeneration, but unhindered proliferation and differentiation capacity. Results also show that impaired fate decisions in PINK1-deficient MuSCs can be restored by scavenging excess mitochondrial ROS. These data shed light on the regulation of mitophagy in MuSCs and position PINK1 as an important regulator of their mitochondrial properties and fate decisions.


Subject(s)
Cell Differentiation , Mitophagy , Protein Kinases , Regeneration , Stem Cells , Animals , Mitophagy/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Protein Kinases/deficiency , Mice , Cell Differentiation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/deficiency , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Reactive Oxygen Species/metabolism , Muscle Development/genetics , Cell Proliferation
3.
iScience ; 27(3): 109164, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38414856

ABSTRACT

Myogenic differentiation is integral for the regeneration of skeletal muscle following tissue damage. Though high-energy post-mitotic muscle relies predominantly on mitochondrial respiration, the importance of mitochondrial remodeling in enabling muscle differentiation and the players involved are not fully known. Here we show that the mitochondrial fusion protein OPA1 is essential for muscle differentiation. Our study demonstrates that OPA1 loss or inhibition, through genetic and pharmacological means, abolishes in vivo muscle regeneration and in vitro myotube formation. We show that both the inhibition and genetic deletion of OPA1 prevent the early onset metabolic switch required to drive myoblast differentiation. In addition, we observe an OPA1-dependent upregulation of the supercomplex assembly factor, SCAF1, at the onset of differentiation. Importantly, preventing the upregulation of SCAF1, through OPA1 loss or siRNA-mediated SCAF1 knockdown, impairs metabolic reprogramming and muscle differentiation. These findings reveal the integral role of OPA1 and mitochondrial reprogramming at the onset of myogenic differentiation.

4.
Mol Cell Biol ; 43(10): 531-546, 2023.
Article in English | MEDLINE | ID: mdl-37807652

ABSTRACT

During the inflammatory response, macrophage phenotypes can be broadly classified as pro-inflammatory/classically activated "M1", or pro-resolving/alternatively "M2" macrophages. Although the classification of macrophages is general and assumes there are distinct phenotypes, in reality macrophages exist across a spectrum and must transform from a pro-inflammatory state to a proresolving state following an inflammatory insult. To adapt to changing metabolic needs of the cell, mitochondria undergo fusion and fission, which have important implications for cell fate and function. We hypothesized that mitochondrial fission and fusion directly contribute to macrophage function during the pro-inflammatory and proresolving phases. In the present study, we find that mitochondrial length directly contributes to macrophage phenotype, primarily during the transition from a pro-inflammatory to a proresolving state. Phenocopying the elongated mitochondrial network (by disabling the fission machinery using siRNA) leads to a baseline reduction in the inflammatory marker IL-1ß, but a normal inflammatory response to LPS, similar to control macrophages. In contrast, in macrophages with a phenocopied fragmented phenotype (by disabling the fusion machinery using siRNA) there is a heightened inflammatory response to LPS and increased signaling through the ATF4/c-Jun transcriptional axis compared to control macrophages. Importantly, macrophages with a fragmented mitochondrial phenotype show increased expression of proresolving mediator arginase 1 and increased phagocytic capacity. Promoting mitochondrial fragmentation caused an increase in cellular lactate, and an increase in histone lactylation which caused an increase in arginase 1 expression. These studies demonstrate that a fragmented mitochondrial phenotype is critical for the proresolving response in macrophages and specifically drive epigenetic changes via lactylation of histones following an inflammatory insult.


Subject(s)
Arginase , Histones , Humans , Histones/metabolism , Arginase/genetics , Arginase/metabolism , Lipopolysaccharides/metabolism , Macrophages/metabolism , Phenotype , Inflammation/metabolism , RNA, Small Interfering/metabolism
5.
STAR Protoc ; 4(1): 102107, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36853728

ABSTRACT

Since changes in mitochondrial morphology regulate key functions of stem cells, it is important to assess their structure under physiological and pathophysiological conditions. Here, we present techniques optimized in rare adult muscle stem cells (MuSCs). For evaluating mitochondrial length and volume within a compact cytoplasmic area in MuSCs on intact myofibers, we describe steps for mitochondrial staining, imaging, and quantification. For evaluating mitochondrial ultrastructure in small cell numbers, we describe steps for agarose embedding and quantification by TEM. For complete details on generation and use of this protocol, please refer to Baker et al. (2022).1.


Subject(s)
Adult Stem Cells , Mitochondria , Animals , Mice , Mitochondrial Membranes , Cytoplasm , Stem Cells
6.
Cell Stem Cell ; 29(9): 1315-1332.e9, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35998642

ABSTRACT

Quiescence regulation is essential for adult stem cell maintenance and sustained regeneration. Our studies uncovered that physiological changes in mitochondrial shape regulate the quiescent state of adult muscle stem cells (MuSCs). We show that MuSC mitochondria rapidly fragment upon an activation stimulus, via systemic HGF/mTOR, to drive the exit from deep quiescence. Deletion of the mitochondrial fusion protein OPA1 and mitochondrial fragmentation transitions MuSCs into G-alert quiescence, causing premature activation and depletion upon a stimulus. OPA1 loss activates a glutathione (GSH)-redox signaling pathway promoting cell-cycle progression, myogenic gene expression, and commitment. MuSCs with chronic OPA1 loss, leading to mitochondrial dysfunction, continue to reside in G-alert but acquire severe cell-cycle defects. Additionally, we provide evidence that OPA1 decline and impaired mitochondrial dynamics contribute to age-related MuSC dysfunction. These findings reveal a fundamental role for OPA1 and mitochondrial dynamics in establishing the quiescent state and activation potential of adult stem cells.


Subject(s)
Adult Stem Cells , Mitochondrial Proteins , Mitochondrial Dynamics , Muscles , Myoblasts
7.
Methods Mol Biol ; 2515: 17-28, 2022.
Article in English | MEDLINE | ID: mdl-35776343

ABSTRACT

Mitochondria are dynamic organelles that rely on a balance of opposing fission and fusion events to sustain mitochondrial function and efficiently meet the energy demands of a cell. As high-energy demanding cells, neurons rely heavily on optimally functional mitochondria with balanced mitochondrial dynamics, to ensure a sufficient energy supply required to maintain cell survival, establish membrane excitability and partake in processes of neurotransmission and plasticity. As such, many neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease) and stress conditions (e.g., stroke) leading to neuronal dysfunction or death are often associated with impaired mitochondrial function and dynamics, characterized by excessive mitochondrial fragmentation. For this reason, the assessment of mitochondrial morphology in neurons and within the brain can provide valuable information. The dynamic nature of mitochondria is not only observed in shape changes, but also changes in mitochondrial network connectivity and in cristae architecture. In this chapter, we will describe how mitochondrial morphology can be examined in vitro using hippocampal neuronal cultures and in vivo using mouse brain sections by immunocytochemistry, immunohistochemistry, and electron microscopy techniques.


Subject(s)
Mitochondria , Mitochondrial Membranes , Animals , Brain , Mice , Mitochondrial Dynamics , Neurons
8.
Int J Biochem Cell Biol ; 144: 106158, 2022 03.
Article in English | MEDLINE | ID: mdl-35063637

ABSTRACT

Mitochondria are considered the metabolic hubs within a cell. These organelles are highly dynamic and continuously undergo cycles of fission and fusion events. The balance in the dynamic state of mitochondria is critical for maintaining key physiological events within cells. Here we discuss the emerging role of mitochondrial dynamics in regulating stem cell function and highlight the crosstalk between mitochondrial shape and intracellular signaling cascades within the context of stem cells.


Subject(s)
Mitochondria , Mitochondrial Dynamics , Mitochondria/metabolism , Organelles/metabolism , Signal Transduction , Stem Cells/metabolism
9.
Methods Mol Biol ; 2277: 289-297, 2021.
Article in English | MEDLINE | ID: mdl-34080158

ABSTRACT

Mitochondrial reactive oxygen species (mtROS) and redox regulation play an important role in stem cell maintenance and cell fate decisions. Although changes in mtROS and redox homeostasis represent a physiological mechanism to drive stem cell commitment and differentiation, dysregulation of this system can lead to defects in stem cell maintenance and regenerative capacity. This chapter explains the methods used to assess mitochondrial superoxide levels and redox regulation in stem cell populations.


Subject(s)
Mitochondria/metabolism , Reactive Oxygen Species/analysis , Stem Cells/metabolism , Animals , Gene Expression Profiling/methods , Mice , Muscle, Skeletal/cytology , Organophosphorus Compounds/chemistry , Oxidation-Reduction , Phenanthridines/chemistry , Reactive Oxygen Species/metabolism , Stem Cells/physiology , Superoxide Dismutase/genetics , Superoxides/analysis , Superoxides/metabolism , Uncoupling Protein 2/genetics
10.
Biology (Basel) ; 9(12)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352783

ABSTRACT

The fundamental importance of functional mitochondria in the survival of most eukaryotic cells, through regulation of bioenergetics, cell death, calcium dynamics and reactive oxygen species (ROS) generation, is undisputed. However, with new avenues of research in stem cell biology these organelles have now emerged as signaling entities, actively involved in many aspects of stem cell functions, including self-renewal, commitment and differentiation. With this recent knowledge, it becomes evident that regulatory pathways that would ensure the maintenance of mitochondria with state-specific characteristics and the selective removal of organelles with sub-optimal functions must play a pivotal role in stem cells. As such, mitophagy, as an essential mitochondrial quality control mechanism, is beginning to gain appreciation within the stem cell field. Here we review and discuss recent advances in our knowledge pertaining to the roles of mitophagy in stem cell functions and the potential contributions of this specific quality control process on to the progression of aging and diseases.

11.
Cell Rep ; 33(4): 108318, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33113373

ABSTRACT

Polyphosphates (polyPs) are long chains of inorganic phosphates linked by phosphoanhydride bonds. They are found in all kingdoms of life, playing roles in cell growth, infection, and blood coagulation. Unlike in bacteria and lower eukaryotes, the mammalian enzymes responsible for polyP metabolism are largely unexplored. We use RNA sequencing (RNA-seq) and mass spectrometry to define a broad impact of polyP produced inside of mammalian cells via ectopic expression of the E. coli polyP synthetase PPK. We find that multiple cellular compartments can support accumulation of polyP to high levels. Overproduction of polyP is associated with reprogramming of both the transcriptome and proteome, including activation of the ERK1/2-EGR1 signaling axis. Finally, fractionation analysis shows that polyP accumulation results in relocalization of nuclear/cytoskeleton proteins, including targets of non-enzymatic lysine polyphosphorylation. Our work demonstrates that internally produced polyP can activate diverse signaling pathways in human cells.


Subject(s)
Nuclear Proteins/metabolism , Polyphosphates/metabolism , Humans
12.
Cell Death Dis ; 11(5): 321, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32371858

ABSTRACT

Mitochondria play a crucial role in neuronal survival through efficient energy metabolism. In pathological conditions, mitochondrial stress leads to neuronal death, which is regulated by the anti-apoptotic BCL-2 family of proteins. MCL-1 is an anti-apoptotic BCL-2 protein localized to mitochondria either in the outer membrane (OM) or inner membrane (Matrix), which have distinct roles in inhibiting apoptosis and promoting bioenergetics, respectively. While the anti-apoptotic role for Mcl1 is well characterized, the protective function of MCL-1 Matrix remains poorly understood. Here, we show MCL-1OM and MCL-1Matrix prevent neuronal death through distinct mechanisms. We report that MCL-1Matrix functions to preserve mitochondrial energy transduction and improves respiratory chain capacity by modulating mitochondrial oxygen consumption in response to mitochondrial stress. We show that MCL-1Matrix protects neurons from stress by enhancing respiratory function, and by inhibiting mitochondrial permeability transition pore opening. Taken together, our results provide novel insight into how MCL-1Matrix may confer neuroprotection under stress conditions involving loss of mitochondrial function.


Subject(s)
Cell Survival/genetics , Mitochondria/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neurons/metabolism , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Cell Death/genetics , Humans , Mice , Mitochondria/genetics , Mitochondrial Membranes/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
13.
Mitochondrion ; 49: 259-268, 2019 11.
Article in English | MEDLINE | ID: mdl-31207408

ABSTRACT

The dynamic and fluid nature of mitochondria allows for modifications in mitochondrial shape, connectivity and cristae architecture. The precise balance of mitochondrial dynamics is among the most critical features in the control of mitochondrial function. In the past few years, mitochondrial shape has emerged as a key regulatory factor in the determination of the bioenergetic capacity of cells. This is mostly due to the recent discoveries linking changes in cristae organization with supercomplex assembly of the electron transport chain (ETC), also defined as the formation of respirosomes. Here we will review the most current advances demonstrating the impact of mitochondrial dynamics and cristae shape on oxidative metabolism, respiratory efficiency, and redox state. Furthermore, we will discuss the implications of mitochondrial dynamics and supercomplex assembly under physiological and pathological conditions.


Subject(s)
Energy Metabolism/physiology , Mitochondria/metabolism , Mitochondrial Dynamics/physiology , Mitochondrial Membranes/metabolism , Animals , Cell Respiration/physiology , Humans
14.
Nat Rev Neurosci ; 20(1): 34-48, 2019 01.
Article in English | MEDLINE | ID: mdl-30464208

ABSTRACT

Emerging evidence now indicates that mitochondria are central regulators of neural stem cell (NSC) fate decisions and are crucial for both neurodevelopment and adult neurogenesis, which in turn contribute to cognitive processes in the mature brain. Inherited mutations and accumulated damage to mitochondria over the course of ageing serve as key factors underlying cognitive defects in neurodevelopmental disorders and neurodegenerative diseases, respectively. In this Review, we explore the recent findings that implicate mitochondria as crucial regulators of NSC function and cognition. In this respect, mitochondria may serve as targets for stem-cell-based therapies and interventions for cognitive defects.


Subject(s)
Brain/metabolism , Cell Differentiation/physiology , Cognition/physiology , Mitochondria/metabolism , Neural Stem Cells/metabolism , Animals , Brain/cytology , Cognition Disorders/metabolism , Cognition Disorders/pathology , Humans , Neural Stem Cells/cytology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurogenesis/physiology
15.
Dev Dyn ; 247(1): 47-53, 2018 01.
Article in English | MEDLINE | ID: mdl-28643345

ABSTRACT

Mitochondria are classically known to be the cellular energy producers, but a renewed appreciation for these organelles has developed with the accumulating discoveries of additional functions. The importance of mitochondria within the brain has been long known, particularly given the high-energy demanding nature of neurons. The energy demands imposed by neurons require the well-orchestrated morphological adaptation and distribution of mitochondria. Recent studies now reveal the importance of mitochondrial dynamics not only in mature neurons but also during neural development, particularly during the process of neurogenesis and neural stem cell fate decisions. In this review, we will highlight the recent findings that illustrate the importance of mitochondrial dynamics in neurodevelopment and neural stem cell function. Developmental Dynamics 247:47-53, 2018. © 2017 Wiley Periodicals, Inc.


Subject(s)
Brain/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics/physiology , Neurogenesis/physiology , Animals , Brain/growth & development , Energy Metabolism/physiology , Neural Stem Cells/metabolism
16.
Antioxid Redox Signal ; 28(11): 1090-1101, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-28657337

ABSTRACT

Significance: Recent discoveries in mitochondrial biology have transformed and further solidified the importance of mitochondria in development, aging, and disease. Within the realm of regenerative and stem cell research, these recent advances have brought forth new concepts that revolutionize our understanding of metabolic and redox states in the establishment of cellular identity and fate decisions. Recent Advances: Mitochondrial metabolism, morphology, and cellular redox states are dynamic characteristics that undergo shifts during stem cell differentiation. Although it was once thought that this was solely because of changing metabolic needs of differentiating cells, it is now clear that these events are driving forces in the regulation of stem cell identity and fate decisions. Critical Issues: Although recent discoveries have placed mitochondrial function and physiological reactive oxygen species (ROS) at the forefront for the regulation of stem cell self-renewal, how this may impact tissue homeostasis and regenerative capacity is poorly understood. In addition, the role of mitochondria and ROS on the maintenance of a stem cell population in many degenerative diseases and during aging is not clear, despite the fact that mitochondrial dysfunction and elevated ROS levels are commonly observed in these conditions. Future Directions: Given the newly established role for mitochondria and ROS in stem cell self-renewal capacity, special attention should now be directed in understanding how this would impact the development and progression of aging and diseases, whereby mitochondrial and ROS defects are a prominent factor. Antioxid. Redox Signal. 28, 1090-1101.

17.
Curr Opin Cell Biol ; 49: 1-8, 2017 12.
Article in English | MEDLINE | ID: mdl-29175320

ABSTRACT

Mitochondria are classically known as the essential energy producers in cells. As such, the activation of mitochondrial metabolism upon cellular differentiation was deemed a necessity to fuel the high metabolic needs of differentiated cells. However, recent studies have revealed a direct role for mitochondrial activity in the regulation of stem cell fate and differentiation. Several components of mitochondrial metabolism and respiration have now been shown to regulate different aspects of stem cell differentiation through signaling, transcriptional, proteomic and epigenetic modulations. In light of these findings mitochondrial metabolism is no longer considered a consequence of cellular differentiation, but rather a key regulatory mechanism of this process. This review will focus on recent progress that defines mitochondria as the epicenters for the regulation of stem cell fate decisions.


Subject(s)
Cell Differentiation/genetics , Cell Self Renewal/genetics , Mitochondria/metabolism , Humans
18.
Hum Mol Genet ; 26(17): 3327-3341, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28595361

ABSTRACT

Mitochondrial dysfunction is a common feature of many genetic disorders that target the brain and cognition. However, the exact role these organelles play in the etiology of such disorders is not understood. Here, we show that mitochondrial dysfunction impairs brain development, depletes the adult neural stem cell (NSC) pool and impacts embryonic and adult neurogenesis. Using deletion of the mitochondrial oxidoreductase AIF as a genetic model of mitochondrial and neurodegenerative diseases revealed the importance of mitochondria in multiple steps of the neurogenic process. Developmentally, impaired mitochondrial function causes defects in NSC self-renewal, neural progenitor cell proliferation and cell cycle exit, as well as neuronal differentiation. Sustained mitochondrial dysfunction into adulthood leads to NSC depletion, loss of adult neurogenesis and manifests as a decline in brain function and cognitive impairment. These data demonstrate that mitochondrial dysfunction, as observed in genetic mitochondrial and neurodegenerative diseases, underlies the decline of brain function and cognition due to impaired stem cell maintenance and neurogenesis.


Subject(s)
Mitochondria/metabolism , Mitochondria/physiology , Neural Stem Cells/metabolism , Animals , Apoptosis Inducing Factor/metabolism , Brain/metabolism , Cell Differentiation , Cell Proliferation , Cognition , Cognitive Dysfunction/metabolism , Humans , Mice , Mice, Transgenic , Neurodegenerative Diseases/metabolism , Neurogenesis/genetics , Neurogenesis/physiology , Neurons/metabolism , Signal Transduction
19.
Dev Cell ; 39(2): 155-168, 2016 10 24.
Article in English | MEDLINE | ID: mdl-27720612

ABSTRACT

The amyloid state of protein organization is typically associated with debilitating human neuropathies and is seldom observed in physiology. Here, we uncover a systemic program that leverages the amyloidogenic propensity of proteins to regulate cell adaptation to stressors. On stimulus, cells assemble the amyloid bodies (A-bodies), nuclear foci containing heterogeneous proteins with amyloid-like biophysical properties. A discrete peptidic sequence, termed the amyloid-converting motif (ACM), is capable of targeting proteins to the A-bodies by interacting with ribosomal intergenic noncoding RNA (rIGSRNA). The pathological ß-amyloid peptide, involved in Alzheimer's disease, displays ACM-like activity and undergoes stimuli-mediated amyloidogenesis in vivo. Upon signal termination, elements of the heat-shock chaperone pathway disaggregate the A-bodies. Physiological amyloidogenesis enables cells to store large quantities of proteins and enter a dormant state in response to stressors. We suggest that cells have evolved a post-translational pathway that rapidly and reversibly converts native-fold proteins to an amyloid-like solid phase.


Subject(s)
Adaptation, Physiological , Amyloid/metabolism , Stress, Physiological , Amino Acid Motifs , Amyloid beta-Peptides/metabolism , Animals , Biophysical Phenomena , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Female , Heat-Shock Response , Humans , MCF-7 Cells , Mice, Nude , Molecular Chaperones/metabolism , RNA, Untranslated/genetics , Ribosomes/metabolism
20.
Cell Stem Cell ; 19(2): 232-247, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27237737

ABSTRACT

Regulated mechanisms of stem cell maintenance are key to preventing stem cell depletion and aging. While mitochondrial morphology plays a fundamental role in tissue development and homeostasis, its role in stem cells remains unknown. Here, we uncover that mitochondrial dynamics regulates stem cell identity, self-renewal, and fate decisions by orchestrating a transcriptional program. Manipulation of mitochondrial structure, through OPA1 or MFN1/2 deletion, impaired neural stem cell (NSC) self-renewal, with consequent age-dependent depletion, neurogenesis defects, and cognitive impairments. Gene expression profiling revealed ectopic expression of the Notch self-renewal inhibitor Botch and premature induction of transcription factors that promote differentiation. Changes in mitochondrial dynamics regulate stem cell fate decisions by driving a physiological reactive oxygen species (ROS)-mediated process, which triggers a dual program to suppress self-renewal and promote differentiation via NRF2-mediated retrograde signaling. These findings reveal mitochondrial dynamics as an upstream regulator of essential mechanisms governing stem cell self-renewal and fate decisions through transcriptional programming.


Subject(s)
Cell Lineage , Cell Nucleus/genetics , Mitochondrial Dynamics , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Transcription, Genetic , Adenosine Triphosphate/pharmacology , Animals , Cell Lineage/drug effects , Cell Lineage/genetics , Cell Nucleus/drug effects , Cell Self Renewal/drug effects , Cognition/drug effects , GTP Phosphohydrolases/metabolism , Gene Deletion , Metabolomics , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , NF-E2-Related Factor 2/metabolism , Neural Stem Cells/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...