Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Health Place ; 77: 102891, 2022 09.
Article in English | MEDLINE | ID: mdl-35970068

ABSTRACT

Biweekly county COVID-19 data were linked with Longitudinal Employer-Household Dynamics data to analyze population risk exposures enabled by pre-pandemic, country-wide commuter networks. Results from fixed-effects, spatial, and computational statistical approaches showed that commuting network exposure to COVID-19 predicted an area's COVID-19 cases and deaths, indicating spillovers. Commuting spillovers between counties were independent from geographic contiguity, pandemic-time mobility, or social media ties. Results suggest that commuting connections form enduring social linkages with effects on health that can withstand mobility disruptions. Findings contribute to a growing relational view of health and place, with implications for neighborhood effects research and place-based policies.


Subject(s)
COVID-19 , Social Media , COVID-19/epidemiology , Humans , Pandemics , Residence Characteristics , Transportation
2.
Nat Sci Sleep ; 11: 387-399, 2019.
Article in English | MEDLINE | ID: mdl-31849551

ABSTRACT

BACKGROUND: The current gold standard for measuring sleep is polysomnography (PSG), but it can be obtrusive and costly. Actigraphy is a relatively low-cost and unobtrusive alternative to PSG. Of particular interest in measuring sleep from actigraphy is prediction of sleep-wake states. Current literature on prediction of sleep-wake states from actigraphy consists of methods that use population data, which we call generalized models. However, accounting for variability of sleep patterns across individuals calls for personalized models of sleep-wake states prediction that could be potentially better suited to individual-level data and yield more accurate estimation of sleep. PURPOSE: To investigate the validity of developing personalized machine learning models, trained and tested on individual-level actigraphy data, for improved prediction of sleep-wake states and reliable estimation of nightly sleep parameters. PARTICIPANTS AND METHODS: We used a dataset including 54 participants and systematically trained and tested 5 different personalized machine learning models as well as their generalized counterparts. We evaluated model performance compared to concurrent PSG through extensive machine learning experiments and statistical analyses. RESULTS: Our experiments show the superiority of personalized models over their generalized counterparts in estimating PSG-derived sleep parameters. Personalized models of regularized logistic regression, random forest, adaptive boosting, and extreme gradient boosting achieve estimates of total sleep time, wake after sleep onset, sleep efficiency, and number of awakenings that are closer to those obtained by PSG, in absolute difference, than the same estimates from their generalized counterparts. We further show that the difference between estimates of sleep parameters obtained by personalized models and those of PSG is statistically non-significant. CONCLUSION: Personalized machine learning models of sleep-wake states outperform their generalized counterparts in terms of estimating sleep parameters and are indistinguishable from PSG labeled sleep-wake states. Personalized machine learning models can be used in actigraphy studies of sleep health and potentially screening for some sleep disorders.

SELECTION OF CITATIONS
SEARCH DETAIL