Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Biol Endocrinol ; 21(1): 2, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36631813

ABSTRACT

BACKGROUND: Forty-six ,XY Differences/Disorders of Sex Development (DSD) are characterized by a broad phenotypic spectrum ranging from typical female to male with undervirilized external genitalia, or more rarely testicular regression with a typical male phenotype. Despite progress in the genetic diagnosis of DSD, most 46,XY DSD cases remain idiopathic. METHODS: To determine the genetic causes of 46,XY DSD, we studied 165 patients of Tunisian ancestry, who presented a wide range of DSD phenotypes. Karyotyping, candidate gene sequencing, and whole-exome sequencing (WES) were performed. RESULTS: Cytogenetic abnormalities, including a high frequency of sex chromosomal anomalies (85.4%), explained the phenotype in 30.9% (51/165) of the cohort. Sanger sequencing of candidate genes identified a novel pathogenic variant in the SRY gene in a patient with 46,XY gonadal dysgenesis. An exome screen of a sub-group of 44 patients with 46,XY DSD revealed pathogenic or likely pathogenic variants in 38.6% (17/44) of patients. CONCLUSION: Rare or novel pathogenic variants were identified in the AR, SRD5A2, ZNRF3, SOX8, SOX9 and HHAT genes. Overall our data indicate a genetic diagnosis rate of 41.2% (68/165) in the group of 46,XY DSD.


Subject(s)
Acyltransferases , Gonadal Dysgenesis, 46,XY , SOXE Transcription Factors , Sexual Development , Testis , Ubiquitin-Protein Ligases , Female , Humans , Male , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Acyltransferases/genetics , Gonadal Dysgenesis, 46,XY/genetics , Membrane Proteins/genetics , Mutation , Phenotype , Sex Differentiation , Sexual Development/genetics , SOXE Transcription Factors/genetics , Testis/growth & development , Ubiquitin-Protein Ligases/genetics
2.
Mol Cytogenet ; 15(1): 42, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36192753

ABSTRACT

BACKGROUND: Corpus callosum malformations (CCM) represent one of the most common congenital cerebral malformations with a prevalence of around one for 4000 births. There have been at least 230 reports in the literature concerning 1q43q44 deletions of varying sizes discovered using chromosomal microarrays. This disorder is distinguished by global developmental delay, seizures, hypotonia, corpus callosum defects, and significant craniofacial dysmorphism. In this study, we present a molecular cytogenetic analysis of 2 Tunisian patients with corpus callosum malformations. Patient 1 was a boy of 3 years old who presented psychomotor retardation, microcephaly, behavioral problems, interventricular septal defect, moderate pulmonary stenosis, hypospadias, and total CCA associated with delayed encephalic myelination. Patient 2 was a boy of 9 months. He presented a facial dysmorphia, a psychomotor retardation, an axial hypotonia, a quadri pyramidal syndrome, a micropenis, and HCC associated with decreased volume of the periventricular white matter. Both the array comparative genomic hybridization and fluorescence in situ hybridization techniques were used. RESULTS: Array CGH analysis reveals that patient 1 had the greater deletion size (11,7 Mb) at 1q43. The same region harbors a 2,7 Mb deletion in patient 2. Here, we notice that the larger the deletion, the more genes are likely to be involved, and the more severe the phenotype is likely to be. In both patients, the commonly deleted region includes six genes: PLD5, AKT3, ZNF238, HNRNPU, SDCCAG8 and CEP170. Based on the role of the ZNF238 gene in neuronal proliferation, migration, and cortex development, we hypothesized that the common deletion of ZNF238 in both patients seems to be the most responsible for corpus callosum malformations. Its absence may directly cause CCM. In addition, due to their high expression in the brain, PLD5 and FMN2 could modulate in the CCM phenotype. CONCLUSION: Our findings support and improve the complex genotype-phenotype correlations previously reported in the 1qter microdeletion syndrome and define more precisely the neurodevelopmental phenotypes associated with genetic alterations of several genes related to this pathology.

SELECTION OF CITATIONS
SEARCH DETAIL
...