Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 15(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36679351

ABSTRACT

The present study aimed to investigate the physical stability in terms of (droplet size, pH, and ionic strength) and chemical stability in terms of (retention) of D-limonene (LM) in the nanoemulsions after emulsification as well as after storing them for 30 days under different temperatures (5 °C, 25 °C, and 50 °C). LM is a cyclic monoterpene and a major component extracted from citrus fruits. The modification of disperse phase with soybean oil (SB) and a nonionic emulsifier (Tween 80) was adequate to prepare stable LM-loaded nanoemulsions. LM blended with SB-loaded nanoemulsions were stable against droplet growth over pH (3-9) and ionic strength (0-500 mM NaCl). Regarding long-term storage, the prepared nanoemulsions demonstrated excellent physical stability with droplet size ranging from 120-130 nm during 30 days of storage at both 5 °C and 25 °C; however, oiling off started in the emulsions, which were stored at 50 °C from day 10. On the other hand, the retention of LM in the emulsions was significantly impacted by storage temperature. Nanoemulsions stored at 5 °C had the highest retention of 91%, while nanoemulsions stored at 25 °C had the lowest retention of 82%.

2.
J Food Sci Technol ; 59(11): 4427-4435, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36193465

ABSTRACT

In this study, we evaluated the caprylic acid-based oil-in-water (O/W) emulsion-assisted extraction of lycopene from tomatoes. Emulsion-assisted extraction was performed using two types of micron-sized O/W emulsions: (a) O/W emulsion with absence or (b) presence of 0.1% (w/w) of Tween 20 emulsifier. This green extraction technique was compared with the conventional method using soybean oil, tributyrin, and caprylic acid. The results show that caprylic acid, a green solvent, is significantly more effective for lycopene recovery than soybean oil and tributyrin. In the absence of an emulsifier, caprylic acid-based O/W emulsion significantly improved the lycopene content by 14.69 mg/g, corresponding to a 98.59% extraction efficiency at 50 ˚C. The capability of the proposed approach to lycopene recovery was explained in terms of lycopene affinity, the ability to swell the tomato cell, and some other standard parameters. In addition, caprylic acid has the significant advantage that once developed with the extracted lycopene can be used directly as a food additive.

3.
J Food Sci Technol ; 58(9): 3314-3327, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34366449

ABSTRACT

Foodborne diseases are a huge problem that causes dramatic economic losses and threatens consumers' lives. Chitosan-based film incorporated with essential oil nanoemulsion would be an ideal solution to build smart food packaging. Thyme oil was formulated into nanoemulsion and checked for the droplet size, distribution, and physical stability. The prepared thyme oil nanoemulsion was incorporated with the chitosan-filmogenic mixture through continuous mixing. The filmogenic mixture was cast, dried, and assessed for their morphological, physical, mechanical, and molecular properties. In addition to investigating the antimicrobial activity against gram-negative (Escherichia coli spp.) and gram-positive (Bacillus subtilis spp.) bacteria. Thyme oil nanoemulsion showed a small droplet size (89-90 nm) with considerable stability. Incorporating thyme oil nanoemulsion with the chitosan-based film did not cause great change in the film appearance and transparency, while enhanced the light barrier property. It caused noticeable changes to the film physical (ex., moisture content, water vapor permeability, among others) and mechanical (Tensile strength and elongation at break) properties. On the other hand, it improved the film thermal stability without causing a structural alteration in the film matrix. Incorporation of chitosan-based film with thyme nanoemulsion remarkably improved the antimicrobial activity against foodborne pathogens. Chitosan-based film incorporated with thyme oil nanoemulsion would be considered a promising antimicrobial food packaging material with considerable packaging properties, and substantial growth inhibitor of foodborne pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL