Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Total Environ ; 920: 170599, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38309343

ABSTRACT

Global coarse-resolution (≥250 m) burned area (BA) products have been used to estimate fire related forest loss, but we hypothesised that a significant part of fire impacts might be undetected because of the underestimation of small fires (<100 ha), especially in the tropics. In this paper, we analysed fire-related forest cover loss in sub-Saharan Africa (SSA) for 2016 and 2019 based on a BA product generated from Sentinel-2 data (20 m), which was observed to have significantly lower omission errors than the coarse-resolution BA products. Using these higher resolution BA datasets, we found that fires contribute to >46 % of total forest losses over SSA, more than twice the estimates from coarse-resolution BA products. In addition, burned forest areas showed more than twofold likelihood of subsequent loss compared to unburned ones. In moist tropical forests, the most fire-vulnerable biome, burning had even six times more chance to precede forest loss than unburned areas. We also found that fire-related characteristics, such as fire size and season, and forest fragmentation play a major role in the determination of tree cover fate. Our results reveal that medium-resolution BA detects more fires in late fire season, which tend to have higher impact on forests than early season ones. On the other hand, small fires represented the major driver of forest loss after fires and the vast majority of these losses occur in fragmented landscapes near forest edge (<260 m). Therefore medium-resolution BA products are required to obtain a more accurate evaluation of fire impacts in tropical ecosystems.

2.
Sci Total Environ ; 845: 157139, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35817109

ABSTRACT

Coarse resolution sensors are not very sensitive at detecting small fire patches, making current estimations of global burned areas (BA) very conservative. Using medium or high-resolution sensors to generate BA products becomes then a priority, particularly in areas where fires tend to be small and frequent. Building on previous work that developed a small fire dataset (SFD) for Sub-Saharan Africa for 2016, this paper presents a new version of the dataset for 2019 using the two Sentinel-2 satellites (A and B) and VIIRS active fires. Total estimated BA was 4.8 Mkm2. This value was much higher than estimations from two global, coarser-spatial resolution BA products based on MODIS data for the same area and period: 80 % greater than estimates from FireCCI51 (based on MODIS 250 m bands) and 120 % larger than MCD64A1 (based on MODIS 500 m bands). The main differences were observed in those months with higher fire occurrence (November to January for the Northern Hemisphere regions and June to September for the Southern Hemisphere ones). Accuracy assessment of the SFD product was based on a novel sampling strategy designed to obtain independent fire reference perimeters. Validation results showed remarkable high accuracy values comparing to existing global BA products. Overall omission errors (OE) were estimated as 8.5 %, commission errors (CE) as 15.0 %, with a Dice Coefficient of 87.7 %. All of these estimations implied significant improvements over the global, coarser spatial resolution BA products (OE > 50 % and CE > 20 % for the same area and period), as well as over the previous SFD product for 2016 of the same area, generated from a single Sentinel-2 satellite and MODIS active fires (OE = 26.5 % and CE = 19.3 %). Temporal accuracies greatly increased as well with the new product, with 92.5 % of fires detected within the first 10 days of occurrence.


Subject(s)
Fires , Africa South of the Sahara
SELECTION OF CITATIONS
SEARCH DETAIL
...