Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Foods ; 13(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928881

ABSTRACT

An overproducing date fruit with limited industrial utilization leads to significant waste and losses, especially in the early stage of date maturity known as bisr. This study aimed to investigate the potential use of bisr date powder (BDP) at different concentrations (25%, 50%, and 100%) as a natural sweetener instead of sugar and barley flour as a source of dietary fiber, vitamins, and minerals instead of wheat flour (50%) in biscuit production over storage periods of 7, 14, and 21 days. The analysis revealed that the bisr Al-Khalas powder sample had a moisture content of 11.84%, ash content of 2.30%, and crude fiber content of 10.20%. Additionally, it had a low protein (2.50%) and fat (0.77%) content, with total carbohydrates at 82.59%. The gradual substitution of bisr Al-Khalas in biscuit production resulted in an increased moisture, ash, fat, protein, crude fiber, and iron content, as well as a decrease in total carbohydrate percentage. A chemical analysis of bisr Al-Khalas powder demonstrated high levels of antioxidants, with 248.49 mg gallic acid/g of phenolic compounds, 31.03 mg quercetin/g of flavonoids, and an antioxidant activity ranging from 42.30%, as shown by the DPPH test. The peroxide content was 0.009 mg equivalent/kg. Biscuit samples with different proportions of bisr Al-Khalas showed an improved resistance to oxidation compared to samples without bisr Al-Khalas, with increased resistance as the percentage of replacement increased during storage. Physical properties such as the diameter, height, and spread percentage, as well as organoleptic properties like color, flavor, aroma, and taste, were significantly enhanced with higher levels of bisr Al-Khalas in the mixture. Biscuit samples fortified with 100% pure bisr Al-Khalas powder were found to be less acceptable, while samples with a 25% substitution did not negatively impact sensory properties. In addition, acrylamide and hydroxymethylfurfural (HMF) were not detected in bisr powder and biscuit samples prepared at different concentrations (25%, 50%, and 100%). In conclusion, the study suggests that bisr Al-Khalas powder, an underutilized waste product, has the potential to add value to commercial biscuit production due to its high nutritional value and extended storage period resulting from its potent antioxidant activity.

2.
BMC Genom Data ; 25(1): 63, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898391

ABSTRACT

OBJECTIVES: Sabkhas represent polyextreme environments characterized by elevated salinity levels, intense ultraviolet (UV) radiation exposure, and extreme temperature fluctuations. In this study, we present the complete genomes of five bacterial isolates isolated from the sabkha-shore region and investigate their genomic organization and gene annotations. A better understanding of the bacterial genomic organization and genetic adaptations of these bacteria holds promise for engineering microbes with tailored functionalities for diverse industrial and agricultural applications, including bioremediation and promotion of plant growth under salinity stress conditions. DATA DESCRIPTION: We present a comprehensive genome sequencing and annotation of five bacteria (kcgeb_sa, kcgeb_sc, kcgeb_sd, kcgeb_S4, and kcgeb_S11) obtained from the shores of the Abu Dhabi Sabkha region. Initial bacterial identification was conducted through 16 S rDNA amplification and sequencing. Employing a hybrid genome assembly technique combining Illumina short reads (NovaSeq 6000) and Oxford Nanopore long reads (MinION), we obtained complete annotated high-quality gap-free genome sequences. The genome sizes of the kcgeb_sa, kcgeb_sc, kcgeb_sd, kcgeb_S4, and kcgeb_S11 isolates were determined to be 2.4 Mb, 4.1 Mb, 2.9 Mb, 5.05 Mb, and 4.1 Mb, respectively. Our analysis conclusively assigned the bacterial isolates as Staphylococcus capitis (kcgeb_sa), Bacillus spizizenii (kcgeb_sc and kcgeb_S11), Pelagerythrobacter marensis (kcgeb_sd), and Priestia aryabhattai (kcgeb_S4).


Subject(s)
Genome, Bacterial , Molecular Sequence Annotation , Genome, Bacterial/genetics , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Phylogeny
3.
Heliyon ; 10(9): e30627, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765133

ABSTRACT

Hepatotoxin carbon tetrachloride (CCl4) causes liver injury. This research aims to create ZnO-NPs using green synthesis from Moringa oleifera (MO) leaves aqueous extract, and chemically prepared and confirming the synthesis by specialized equipment analysis. The sizes formed of ZnO-NPs were 80 and 55 nm for chemical and green methods, respectively. In addition, to study their ability to protect Wistar Albino male rats against oxidative stress exposed to carbon tetrachloride. MO leaf aqueous extract, green synthesized ZnO-NPs, and ZnO-NPs prepared chemically at 100 and 200 mg/kg BW per day were investigated for their hepatoprotective effects on liver enzyme biomarkers, renal biomarkers, antioxidant enzymes, lipid peroxidation, hematological parameters, and histopathological changes. Compared to the control group, all liver and kidney indicators were considerably elevated after the CCl4 injection. However, the activity of antioxidant enzymes in the liver was significantly reduced after the CCl4 injection. These outcomes indicate that MO leaf aqueous extract, greenly synthesized ZnO-NPs, and ZnO-NPs chemically prepared can restore normal liver and kidney function and activity, as well as hematological and antioxidant enzymes. The highest impact on enhancing the hepatoprotective effect was recorded for rats that received green synthesized ZnO-NPs. The increased drug delivery mechanism of green synthesized ZnO-NPs resulted in a higher protective effect than that of MO leaf aqueous extract.

4.
Molecules ; 29(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792089

ABSTRACT

1-(3-aryl)-3-(dimethylamino)prop-2-en-1-one (enaminones) derivatives and the diazonium salt of para-chloroaniline were used to synthesize several novel disperse azo dyes with high yield and the use of an environmentally friendly approach. At 100 and 130 °C, we dyed polyester fabrics using the new synthesized disperse dyes. At various temperatures, the dyed fabrics' color intensity was assessed. The results we obtained showed that dyeing utilizing a high temperature method at 130 °C was enhanced than dyeing utilizing a low temperature method at 100 °C. Reusing dye baths once or twice was a way to achieve two goals at the same time. The first was obtaining a dyed product at no cost, and the second was a way to treat the wastewater of dyeing bath effluents and reuse it again. Good results were obtained for the fastness characteristics of polyester dyed with disperse dyes. When the disperse dyes were tested against certain types of microbes and cancer cells, they demonstrated good and encouraging findings for the potential to be used as antioxidants and antimicrobial agents.


Subject(s)
Coloring Agents , Polyesters , Textiles , Polyesters/chemistry , Polyesters/chemical synthesis , Coloring Agents/chemistry , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Azo Compounds/chemistry , Azo Compounds/chemical synthesis , Microbial Sensitivity Tests
5.
Microbiol Spectr ; 12(6): e0361723, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38624222

ABSTRACT

We conducted a comprehensive analysis of the total microbiome and transcriptionally active microbiome communities in the roots and root nodules of Prosopis cineraria, an important leguminous tree in arid regions of many Asian countries. Mature P. cineraria trees growing in the desert did not exhibit any detected root nodules. However, we observed root nodules on the roots of P. cineraria growing on a desert farm and on young plants growing in a growth chamber, when inoculated with rhizosphere soil, including with rhizosphere soil from near desert tree roots that had no nodules. Compared to nearby soil, non-nodulated roots were enriched with Actinobacteria (e.g., Actinophytocola sp.), whereas root nodules sampled from the desert farm and growth chamber had abundant Alphaproteobacteria (e.g., Ensifer sp.). These nodules yielded many microbes in addition to such nitrogen-fixing bacteria as Ensifer and Sinorhizobium species. Significant differences exist in the composition and abundance of microbial isolates between the nodule surface and the nodule endosphere. Shotgun metagenome analysis of nodule endospheres revealed that the root nodules comprised over 90% bacterial DNA, whereas metatranscriptome analysis showed that the plant produces vastly more transcripts than the microbes in these nodules. Control inoculations demonstrated that four out of six Rhizobium, Agrobacterium, or Ensifer isolates purified from P. cineraria nodules produced nodules in the roots of P. cineraria seedlings under greenhouse conditions. The best nodulation was achieved when seedlings were inoculated with a mixture of those bacterial strains. Though root nodulation could be achieved under water stress conditions, nodule number and nodule biomass increased with copious water availability. .IMPORTANCEMicrobial communities were investigated in roots and root nodules of Prosopis cineraria, a leguminous tree species in arid Asian regions that is responsible for exceptionally important contributions to soil fertility in these dramatically dry locations. Soil removed from regions near nodule-free roots on these mature plants contained an abundance of bacteria with the genetic ability to generate nodules and fix nitrogen but did not normally nodulate in their native rhizosphere environment, suggesting a very different co-evolved relationship than that observed for herbaceous legumes. The relative over-expression of the low-gene-density plant DNA compared to the bacterial DNA in the nodules was also unexpected, indicating a very powerful induction of host genetic contributions within the nodule. Finally, the water dependence of nodulation in inoculated seedlings suggested a possible link between early seedling growth (before a deep root system can be developed) and the early development of nitrogen-fixing capability.


Subject(s)
Desert Climate , Microbiota , Prosopis , Rhizosphere , Root Nodules, Plant , Soil Microbiology , Root Nodules, Plant/microbiology , Prosopis/microbiology , Prosopis/growth & development , Plant Roots/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Symbiosis , Trees/microbiology , Nitrogen Fixation , Phylogeny
6.
BMC Biotechnol ; 24(1): 14, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491556

ABSTRACT

Cancer associated drug resistance is a major cause for cancer aggravation, particularly as conventional therapies have presented limited efficiency, low specificity, resulting in long term deleterious side effects. Peptide based drugs have emerged as potential alternative cancer treatment tools due to their selectivity, ease of design and synthesis, safety profile, and low cost of manufacturing. In this study, we utilized the Red Sea metagenomics database, generated during AUC/KAUST Red Sea microbiome project, to derive a viable anticancer peptide (ACP). We generated a set of peptide hits from our library that shared similar composition to ACPs. A peptide with a homeodomain was selected, modified to improve its anticancer properties, verified to maintain high anticancer properties, and processed for further in-silico prediction of structure and function. The peptide's anticancer properties were then assessed in vitro on osteosarcoma U2OS cells, through cytotoxicity assay (MTT assay), scratch-wound healing assay, apoptosis/necrosis detection assay (Annexin/PI assay), RNA expression analysis of Caspase 3, KI67 and Survivin, and protein expression of PARP1. L929 mouse fibroblasts were also assessed for cytotoxicity treatment. In addition, the antimicrobial activity of the peptide was also examined on E coli and S. aureus, as sample representative species of the human bacterial microbiome, by examining viability, disk diffusion, morphological assessment, and hemolytic analysis. We observed a dose dependent cytotoxic response from peptide treatment of U2OS, with a higher tolerance in L929s. Wound closure was debilitated in cells exposed to the peptide, while annexin fluorescent imaging suggested peptide treatment caused apoptosis as a major mode of cell death. Caspase 3 gene expression was not altered, while KI67 and Survivin were both downregulated in peptide treated cells. Additionally, PARP-1 protein analysis showed a decrease in expression with peptide exposure. The peptide exhibited minimal antimicrobial activity on critical human microbiome species E. coli and S. aureus, with a low inhibition rate, maintenance of structural morphology and minimal hemolytic impact. These findings suggest our novel peptide displayed preliminary ACP properties against U2OS cells, through limited specificity, while triggering apoptosis as a primary mode of cell death and while having minimal impact on the microbiological species E. coli and S. aureus.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Salts , Animals , Mice , Humans , Caspase 3/genetics , Caspase 3/metabolism , Caspase 3/pharmacology , Survivin/genetics , Survivin/metabolism , Survivin/pharmacology , Escherichia coli/metabolism , Antimicrobial Peptides , Cell Line, Tumor , Indian Ocean , Ki-67 Antigen/metabolism , Staphylococcus aureus , Apoptosis , Peptides/pharmacology , Peptides/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Anti-Infective Agents/pharmacology , Annexins/pharmacology
7.
Antibiotics (Basel) ; 13(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38391519

ABSTRACT

The indiscriminate use of antibiotics in agriculture has raised concerns about antibiotic residues in food products, necessitating robust analytical methods for detection and quantification. In this study, our primary aim was to develop a robust and advanced liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology specifically designed for the accurate quantification of ticarcillin degradation products in tomato leaves. The choice of ticarcillin as the target analyte stems from its frequent use in agriculture and the potential formation of degradation products, which can pose a threat to food safety. The use of tomatoes as the target sample matrix in this study is justified by their significance in human diets, their widespread cultivation, and their suitability as a model for assessing antibiotic residue dynamics in diverse agricultural environments. By optimizing the MS/MS parameters, the study successfully demonstrates the practicality and reliability of the employed LC-MS/MS method in accurately assessing ticarcillin degradation product (Thiophene-2-Acetic acid and Thiophene-3-Acetic acid) levels. The chromatographic separation was achieved using a specialized column, ensuring high resolution and sensitivity in detecting analytes. Multiple reaction monitoring (MRM) data acquisition was employed to enhance the selectivity and accuracy of the analysis. The developed method exhibited excellent linearity and precision, meeting the stringent requirements for antibiotic residue analysis in complex matrices. Key outcomes of this study include the successful identification and quantification of ticarcillin and its degradation products in tomato leaves, providing crucial insights into the fate of this antibiotic in agricultural settings. The methodology's applicability was further demonstrated by analyzing real-world samples, highlighting its potential for routine monitoring and ensuring food safety compliance. In summary, our study constitutes a noteworthy advancement in the domain of antibiotic residue analysis, offering a reliable method for quantifying ticarcillin degradation products in tomato leaves. The optimized parameters and MRM-based LC-MS/MS approach enhance the precision and sensitivity of the analysis, opening up opportunities for further studies in the assessment of antibiotic residues in agricultural ecosystems.

8.
Sci Data ; 11(1): 45, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184710

ABSTRACT

The red palm weevil (RPW) is a highly destructive pest that mainly affects palms, particularly date palms (Phoenix dactylifera), in the Arabian Gulf region. In this study, we present a near-chromosomal-level genome assembly of the RPW using a combination of PacBio HiFi and Dovetail Omini-C reads. The final genome assembly is around 779 Mb in size, with an N50 of ~43 Mb, consistent with our previous flow cytometry estimates. The completeness of the genome was confirmed through BUSCO analysis, which indicates the presence of 99.5% of BUSCO single copy orthologous genes. The genome annotation identified a total of 29,666 protein-coding, 1,091 tRNA and 543 rRNA genes. Overall, the proposed genome assembly is significantly superior to existing assemblies in terms of contiguity, integrity, and genome completeness.


Subject(s)
Genome, Insect , Weevils , Animals , Flow Cytometry , Weevils/genetics
9.
J Opt Soc Am A Opt Image Sci Vis ; 41(1): 45-53, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38175129

ABSTRACT

Analytical formulas for the angular width and propagation factor of a partially coherent standard Laguerre-Gaussian (sLG) vortex beam through anisotropic turbulent plasma were derived based on the extended Huygens-Fresnel integral and the second-order moments of the Wigner distribution function. The evolution properties of the angular width and propagation factor of partially coherent sLG vortex beams propagating in anisotropic turbulent plasma were investigated numerically. The numerical results demonstrate the influence of the source and turbulence parameters on the normalized angular width and normalized propagation factor of the partially coherent sLG vortex beams. It can be observed that in a partially coherent sLG vortex beam with a lower beam order, topological charge, and wavelength, or a higher correlation coefficient of the source plane, and with increasing propagation distance and refractive index fluctuation variance or decreasing anisotropy parameters, the outer and inner scales of the turbulent plasma have a large angular width and propagation factor (i.e., the beam quality is worse). The results of this study will be beneficial for applications in remote sensing and optical communications.

10.
Anal Biochem ; 684: 115372, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37940013

ABSTRACT

Because of the heterogeneity among seedlings of outbreeding species, the use of seedling tissues as a source of DNA is unsuitable for the genomic characterization of elite germplasms. High-quality DNA, free of RNA, proteins, polysaccharides, secondary metabolites, and shearing, is mandatory for downstream molecular biology applications, especially for next-generation genome sequencing and pangenome analysis aiming to capture the complete genetic diversity within a species. The study aimed to accomplish an efficient protocol for the extraction of high-quality DNA suitable for diverse plant species/tissues. We describe a reliable, and consistent protocol suitable for the extraction of DNA from 42 difficult-to-extract plant species belonging to 33 angiosperm (monocot and dicot) families, including tissues such as seeds, roots, endosperm, and flower/fruit tissues. The protocol was first optimized for the outbreeding recalcitrant trees viz., Prosopis cineraria, Conocarpus erectus, and Phoenix dactylifera, which are rich in proteins, polysaccharides, and secondary metabolites, and the quality of the extracted DNA was confirmed by downstream applications. Nine procedures were attempted to extract high-quality, impurities-free DNA from these three plant species. Extraction of the ethanol-precipitated DNA from cetyltrimethylammonium bromide (CTAB) protocol using sodium dodecyl sulfate (SDS) buffer, i.e., the extraction using a cationic (CTAB) detergent followed by an anionic (SDS) detergent was the key for high yield and high purity (1.75-1.85 against A260/280 and an A260/230 ratio of >2) DNA. A vice versa extraction procedure, i.e., SDS buffer followed by CTAB buffer, and also CTAB buffer followed by CTAB, did not yield good-quality DNA. PCR (using different primers) and restriction endonuclease digestion of the DNA extracted from these three plants validated the protocol. The accomplishment of the genome of P. cineraria using the DNA extracted using the modified protocol confirmed its applicability to genomic studies. The optimized protocol successful in extracting high-quality DNA from diverse plant species/tissues extends its applicability and is useful for accomplishing genome sequences of elite germplasm of recalcitrant plant species with quality reads.


Subject(s)
DNA , Detergents , Humans , Cetrimonium , Plants/genetics , Genomics , Polysaccharides , DNA, Plant/genetics
11.
Int J Biol Macromol ; 258(Pt 1): 128793, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38134993

ABSTRACT

In this work, Tamarindus indica (T. indica)-loaded crosslinked poly(methyl methacrylate) (PMMA)/cellulose acetate (CA)/poly(ethylene oxide) (PEO) electrospun nanofibers were designed and fabricated for wound healing applications. T. indica is a plant extract that possesses antidiabetic, antimicrobial, antioxidant, antimalarial and wound healing properties. T. indica leaves extract of different concentrations were blended with a tuned composition of a matrix comprised of PMMA (10 %), CA (2 %) and PEO (1.5 %), and were electrospun to form smooth, dense and continuous nanofibers as illustrated by SEM investigation. In vitro evaluation of T. indica-loaded nanofibers on normal human skin fibroblasts (HBF4) revealed a high compatibility and low cytotoxicity. T. indica-loaded nanofibers significantly increased the healing activity of scratched HBF4 cells, as compared to the free plant extract, and the healing activity was significantly enhanced upon increasing the plant extract concentration. Moreover, T. indica-loaded nanofibers demonstrated significant antimicrobial activity in vitro against the tested microbes. In vivo, nanofibers resulted in a superior wound healing efficiency compared to the control untreated animals. Hence, engineered nanofibers loaded with potent phytochemicals could be exploited as an effective biocompatible and eco-friendly antimicrobial biomaterials and wound healing composites.


Subject(s)
Anti-Infective Agents , Cellulose/analogs & derivatives , Nanofibers , Tamarindus , Animals , Humans , Polymethyl Methacrylate/pharmacology , Nanofibers/chemistry , Wound Healing , Anti-Infective Agents/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology
12.
Front Nutr ; 10: 1240527, 2023.
Article in English | MEDLINE | ID: mdl-37781123

ABSTRACT

Hassawi rice is an Indica variety cultivated in Saudi Arabia with a higher nutritional value than the commercial Basmati rice varieties. The present study has investigated the feasibility of combining Hassawi rice flour (HRF) or husk (HRHF), an abundant byproduct, with wheat flour to produce nutritious economical pan bread. To achieve this aim, the physicochemical properties of HRF and HRHF were assessed using techniques such as UPLC-tandem MS, ICP-OES, and colorimeter. The proximate composition (moisture, crude fiber, and ash) and mineral contents of HRHF are significantly (p < 0.05) higher than HRF. On the other hand, the compounds p-coumaric acid, vanillic acid, γ- and δ-tocotrienols, and γ-oryzanol were unique to HRF. We further determined the changes in sensory, technological, and physicochemical properties of wheat flour bread substituted with 5%, 10%, and 15% of HRF or HRHF. The rheological tests showed that the addition of HRF and HRHF increased dough development and stability time. Further, substituting wheat flour for HRF and HRHF at levels higher than 10% affected sensory attributes, such as color, taste, odor, flavor, and appearance. These changes, however, were not always at a significant level. The causes of the differences in properties between control and fortified bread samples were investigated by chemometric methods. Samples of bread +HRF at 5 and 10% had comparable overall profiles to the control. On the other hand, bread +HRHF samples proved to retain higher concentrations of bioactive molecules compared to the control bread. Our findings shed light on the possible use of rice husk fibers in baking goods, notably pan bread. Furthermore, by integrating rice husk fibers into baked goods, we may boost their health benefits while also contributing to the long-term use of agricultural waste.

13.
Sci Rep ; 13(1): 17941, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37864028

ABSTRACT

Wound healing is one of the most challenging medical circumstances for patients. Pathogens can infect wounds, resulting in tissue damage, inflammation, and disruption of the healing process. Simvastatin was investigated recently, as a wound healing agent that may supersede the present therapies for wounds. Our goal in this paper is to focus on formulation of simvastatin cubosomes for topical delivery, as a potential approach to improve simvastatin skin permeation. By this technique its wound healing effect could be improved. Cubosomes were prepared using the top-down method and the prepared cubosomes were characterized by several techniques. The most optimal simvastatin cubosomal formulation was then included in a cubogel dosage form using different gelling agents. The results showed that the average particle size of the prepared cubosomes was 113.90 ± 0.58 nm, the entrapment efficiency was 93.95 ± 0.49% and a sustained simvastatin release was achieved. The optimized formula of simvastatin cubogel displayed pseudoplastic rheological behavior. This same formula achieved enhancement in drug permeation through excised rat skin compared to free simvastatin hydrogel with flux values of 46.18 ± 2.12 mcg cm-2 h-1 and 25.92 ± 3.45 mcg cm-2 h-1 respectively. Based on the in-vivo rat studies results, this study proved a promising potential of simvastatin cubosomes as wound healing remedy.


Subject(s)
Nanoparticles , Simvastatin , Humans , Rats , Animals , Simvastatin/pharmacology , Poloxamer/pharmacology , Wound Healing , Hydrogels/pharmacology , Particle Size
14.
Front Plant Sci ; 14: 1182074, 2023.
Article in English | MEDLINE | ID: mdl-37731982

ABSTRACT

Efficient regeneration of transgenic plants from explants after transformation is one of the crucial steps in developing genetically modified plants with desirable traits. Identification of novel plant growth regulators and developmental regulators will assist to enhance organogenesis in culture. In this study, we observed enhanced shoot regeneration from tomato cotyledon explants in culture media containing timentin, an antibiotic frequently used to prevent Agrobacterium overgrowth after transformation. Comparative transcriptome analysis of explants grown in the presence and absence of timentin revealed several genes previously reported to play important roles in plant growth and development, including Auxin Response Factors (ARFs), GRF Interacting Factors (GIFs), Flowering Locus T (SP5G), Small auxin up-regulated RNAs (SAUR) etc. Some of the differentially expressed genes were validated by quantitative real-time PCR. We showed that ticarcillin, the main component of timentin, degrades into thiophene acetic acid (TAA) over time. TAA was detected in plant tissue grown in media containing timentin. Our results showed that TAA is indeed a plant growth regulator that promotes root organogenesis from tomato cotyledons in a manner similar to the well-known auxins, indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). In combination with the cytokinin 6-benzylaminopurine (BAP), TAA was shown to promote shoot organogenesis from tomato cotyledon in a concentration-dependent manner. To the best of our knowledge, the present study reports for the first time demonstrating the function of TAA as a growth regulator in a plant species. Our work will pave the way for future studies involving different combinations of TAA with other plant hormones which may play an important role in in vitro organogenesis of recalcitrant species. Moreover, the differentially expressed genes and long noncoding RNAs identified in our transcriptome studies may serve as contender genes for studying molecular mechanisms of shoot organogenesis.

15.
ACS Omega ; 8(37): 33593-33609, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37744783

ABSTRACT

The study aimed to evaluate the potential use of spent coffee powder (SCP) and spent tea powder (STP) as bioactive supplements for sponge cake. To achieve this aim, we initially compared the chemical properties of spent tea and coffee powders with those of their raw forms. Subsequently, three supplemented cake blends were prepared (1, 2, and 3% of SCP and STP) to test the effect of their addition on the chemophysical characteristics, sensory attributes, and shelf life of the final products. Our results indicated that spent tea and coffee are prospective materials for polyphenols. Spent tea powder could retain up to 72% (theaflavin trigallate), while spent coffee powder could retain up to 63.9% (1-caffeoylquinic acid) of the identified compounds compared to the raw materials. Furthermore, spent tea and coffee powders contained high levels of dietary fiber (18.95 and 31.65 g/100 g dry weight) and the elements potassium (254.6 and 1218.2 mg/100 g of DW), phosphorus (189.8 and 161.3 mg/100 g of DW), calcium (904.1 and 237.8 mg/100 g of DW), and magnesium (158.8 and 199.6 mg/100 g of DW). In addition, the fortified samples with SCP and STP significantly enhanced the nutritional values while retaining good sensory qualities compared to those of the control sample. Moreover, cakes fortified with the highest concentrations of SCP and STP (3%) showed a significant decrease in malondialdehyde content (MDA; 17.7 and 18.0 µg/g) and microbiological counts (2.4 and 2.5 log cfu/g) compared to the control cake after 14 days of storage. These findings suggest that incorporating SCP and STP into cakes not only enhances their nutritional value but also extends their shelf life. By utilizing these waste products, we can contribute to a more sustainable and ecofriendly food industry.

16.
Int J Pharm ; 644: 123332, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37625602

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease associated with progressive articular damage, functional loss and comorbidity. Conventional RA therapy requires frequent dosing and prolonged use, and usually results in poor efficacy and severe toxicity. In the current study, for the first time, we describe a combination strategy using phytosomes co-loaded with curcumin (CUR) and leflunomide (LEF) to improve the clinical outcomes of RA therapy. Exploiting 23 factorial design, various compositions of CUR and LEF co-loaded phytosomes (CUR/LEF-phytosomes) were successfully prepared and were extensively characterized (e.g., particle size, zeta potential, drugs encapsulation efficiency, morphology, DSC, FTIR and release kinetics). The optimal CUR/LEF-loaded phytosomes (F2) demonstrated high stability and spherical morphology with a particle size of ca. 760 nm and negative zeta potential value of - 55.7, high entrapment for both drugs, and sustained release profile of the entrapped medications. In vivo, oral administration of the CUR/LEF-phytosomes (F2) in arthritic rats resulted in significant reduction of paw swelling and inflammatory markers, compared to the free drugs and their physical mixture. Histopathological examination revealed significant improvement in phytosomes-treated animal group with no signs of arthritis. CUR/LEF-loaded phytosomes provide an auspicious strategy for alleviation of RA.


Subject(s)
Arthritis, Rheumatoid , Curcumin , Animals , Rats , Phytosomes , Arthritis, Rheumatoid/drug therapy , Leflunomide , Administration, Oral
17.
Plant Methods ; 19(1): 84, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37568159

ABSTRACT

BACKGROUND: High-purity RNA serves as the basic requirement for downstream molecular analysis of plant species, especially the differential expression of genes to various biotic and abiotic stimuli. But, the extraction of high-quality RNA is usually difficult from plants rich in polysaccharides and polyphenols, and their presence usually interferes with the downstream applications. The aim of the study is to optimize the extraction of high-quality RNA from diverse plant species/tissues useful for downstream molecular applications. RESULTS: Extraction of RNA using commercially available RNA extraction kits and routine hexadecyltrimethylammonium bromide (CTAB) methods did not yield good quality DNA-free RNA from Prosopis cineraria, Conocarpus erectus, and Phoenix dactylifera. A reliable protocol for the extraction of high-quality RNA from mature leaves of these difficult-to-extract trees was optimized after screening nine different methods. The DNase I-, and proteinase K treatment-free modified method, consisting of extraction with CTAB method followed by TRIzol, yielded high-quality DNA-free RNA with an A260/A280 and A260/A230 ratios > 2.0. Extraction of RNA from Conocarpus, the most difficult one, was successful by avoiding the heat incubation of ground tissue in a buffer at 65 oC. Pre-warming of the buffer for 5-10 min was sufficient to extract good-quality RNA. RNA integrity number of the extracted RNA samples ranged between 7 and 9.1, and the gel electrophoresis displayed intact bands of 28S and 18S RNA. A cDNA library constructed from the RNA of P. cineraria was used for the downstream applications. Real-time qPCR analysis using the cDNA from P. cineraria RNA confirmed the quality. The extraction of good quality RNA from samples of the desert-growing P. cineraria (> 20-years-old) collected in alternate months of the year 2021 (January to December covering winter, spring, autumn, and the very dry and hot summer) proved the efficacy of the protocol. The protocol's broad applicability was further validated by extracting good-quality RNA from 36 difficult-to-extract plant species, including tissues such as roots, flowers, floral organs, fruits, and seeds. CONCLUSIONS: The modified DNase I and Proteinase K treatment-free protocol enables to extract DNA-free, high-quality, intact RNA from a total of 39 difficult-to-extract plant species belonging to 32 angiosperm families is useful to extract good-quality RNA from dicots and monocots irrespective of tissue types and growing seasons.

18.
Bio Protoc ; 13(15): e4788, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37575390

ABSTRACT

High yield of good quality plasmid DNA from gram -ve bacteria (Agrobacterium tumefaciens, A. rhizogenes, and Rhizobium sp.) and gram +ve bacterium (Bacillus thuringiensis) is difficult. The widely used plasmid extraction kits for Escherichia coli yield a low quantity of poor-quality plasmid DNA from these species. We have optimized an in-house modification of the QIAprep Spin Miniprep kit protocol of Qiagen, consisting of two extraction steps. In the first, the centrifugation after adding neutralization buffer is followed by ethanol (absolute) precipitation of plasmid DNA. In the second extraction step, the precipitated DNA is dissolved in Tris-EDTA (TE) buffer, followed by an addition of 0.5 volumes of 5 M sodium chloride and 0.1 volumes of 20% (w/v) sodium dodecyl sulfate. After incubation at 65 °C for 15 min, the plasmid DNA is extracted with an equal volume of chloroform:isoamyl alcohol (CIA). RNase (20 mg/mL) is added to the upper phase retrieved after centrifugation and is incubated at 37 °C for 15 min. The extraction of the plasmid DNA with an equal volume of CIA is followed by centrifugation and is precipitated from the retrieved upper phase by adding an equal volume of absolute ethanol. The pellet obtained after centrifugation is washed twice with 70% (v/v) ethanol, air dried, dissolved in TE buffer, and quantified. This easy-to-perform protocol is free from phenol extraction, density gradient steps, and DNA binding columns, and yields high-quality plasmid DNA. The protocol opens an easy scale up to yield a large amount of high-quality plasmid DNA, useful for high-throughput downstream applications. Key features The protocol is free from density gradient steps and use of phenol. The protocol is an extension of the QIAprep Spin Miniprep kit (Qiagen) and is applicable for plasmid DNA isolation from difficult-to-extract bacterial species. The protocol facilitates the direct transformation of the ligation product into Agrobacterium by skipping the step of E. coli transformation. The plasmids isolated are of sequencing grade and the method is useful for extracting plasmids for metagenomic studies. Graphical overview Overview of the plasmid isolation protocol (modified QIAprep Spin Miniprep kit) of the present study.

19.
Polymers (Basel) ; 15(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37514441

ABSTRACT

3-(dimethylamino)-1-phenylprop-2-en-1-ones were obtained with good yields by reacting dimethylformamide dimethylacetal with different methyl ketones. 3-oxo-3-phenyl-2-(2-phenylhydrazono)propanals disperse dyes were obtained via reacting of 3-(dimethylamino)-1-phenylprop-2-en-1-ones with phenyldiazonium chloride. The novel dyes were used in dyeing polyester fabrics through two different dyeing methods at temperatures of 100 and 130 °C. We found that the color strength when using the dyeing method at 130 °C was better than the dyeing method at 100 °C. The fastness properties of dyed fabrics with these new disperse dyes were studied and gave very good results (except for fastness to light, which gave moderate results). The new dyes were evaluated against some different types of bacteria and cancer, which showed excellent and promising results for the possibility of using these dyes as antibacterial and anticancer agents.

20.
BMC Cancer ; 23(1): 699, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37495988

ABSTRACT

Drug resistance is a major cause of the inefficacy of conventional cancer therapies, and often accompanied by severe side effects. Thus, there is an urgent need to develop novel drugs with low cytotoxicity, high selectivity and minimal acquired chemical resistance. Peptide-based drugs (less than 0.5 kDa) have emerged as a potential approach to address these issues due to their high specificity and potent anticancer activity. In this study, we developed a support vector machine model (SVM) to detect the potential anticancer properties of novel peptides by scanning the American University in Cairo (AUC) Red Sea metagenomics library. We identified a novel 37-mer antimicrobial peptide through SVM pipeline analysis and characterized its anticancer potential through in silico cross-examination. The peptide sequence was further modified to enhance its anticancer activity, analyzed for gene ontology, and subsequently synthesized. To evaluate the anticancer properties of the modified 37-mer peptide, we assessed its effect on the viability and morphology of SNU449, HepG2, SKOV3, and HeLa cells, using an MTT assay. Additionally, we evaluated the migration capabilities of SNU449 and SKOV3 cells using a scratch-wound healing assay. The targeted selectivity of the modified peptide was examined by evaluating its hemolytic activity on human erythrocytes. Treatment with the peptide significantly reduced cell viability and had a critical impact on the morphology of hepatocellular carcinoma (SNU449 and HepG2), and ovarian cancer (SKOV3) cells, with a marginal effect on cervical cancer cell lines (HeLa). The viability of a human fibroblast cell line (1Br-hTERT) was also significantly reduced by peptide treatment, as were the proliferation and migration abilities of SNU449 and SKOV3 cells. The annexin V assay revealed programmed cell death (apoptosis) as one of the potential cellular death pathways in SNU449 cells upon peptide treatment. Finally, the peptide exhibited antimicrobial effects on both gram-positive and gram-negative bacterial strains. The findings presented here suggest the potential of our novel peptide as a potent anticancer and antimicrobial agent.


Subject(s)
Antimicrobial Cationic Peptides , Antineoplastic Agents , Female , Humans , HeLa Cells , Cell Line, Tumor , Indian Ocean , Antimicrobial Cationic Peptides/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL
...