Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39201601

ABSTRACT

As per the World Health Organization (WHO), antimicrobial resistance (AMR) is a natural phenomenon whereby microbes develop or acquire genes that render them resistant. The rapid emergence and spread of this phenomenon can be attributed to human activity specifically, the improper and excessive use of antimicrobials for the treatment, prevention, or control of infections in humans, animals, and plants. As a result of this factor, many antibiotics have reduced effectiveness against microbes or may not work fully. Thus, there is a pressing need for the development of new antimicrobial agents in order to counteract antimicrobial resistance. Metallic nanoparticles (MNPs) are well known for their broad antimicrobial properties. Consequently, the use of MNPs with current antibiotics holds significant implications. MNPs, including silver nanoparticles (AgNPS), zinc oxide nanoparticles (ZnONPs), copper nanoparticles (CuNPs), and gold nanoparticles (AuNPs), have been extensively studied in conjunction with antibiotics. However, their mechanism of action is still not completely understood. The interaction between these MNPs and antibiotics can be either synergistic, additive, or antagonistic. The synergistic effect is crucial as it represents the desired outcome that researchers aim for and can be advantageous for the advancement of new antimicrobial agents. This article provides a concise and academic description of the recent advancements in MNP and antibiotic conjugates, including their mechanism of action. It also highlights their possible use in the biomedical field and major challenges associated with the use of MNP-antibiotic conjugates in clinical practice.


Subject(s)
Anti-Bacterial Agents , Metal Nanoparticles , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Animals , Drug Resistance, Microbial/drug effects , Drug Resistance, Bacterial/drug effects , Silver/chemistry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
2.
Cell Biol Int ; 48(5): 594-609, 2024 May.
Article in English | MEDLINE | ID: mdl-38321826

ABSTRACT

The regeneration of osteochondral lesions by tissue engineering techniques is challenging due to the lack of physicochemical characteristics and dual-lineage (osteogenesis and chondrogenesis). A scaffold with better mechanical properties and dual lineage capability is required for the regeneration of osteochondral defects. In this study, a hydrogel prepared from decellularized human umbilical cord tissue was developed and evaluated for osteochondral regeneration. Mesenchymal stem cells (MSCs) isolated from the umbilical cord were seeded with hydrogel for 28 days, and cell-hydrogel composites were cultured in basal and osteogenic media. Alizarin red staining, quantitative polymerase chain reaction, and immunofluorescent staining were used to confirm that the hydrogel was biocompatible and capable of inducing osteogenic differentiation in umbilical cord-derived MSCs. The findings demonstrate that human MSCs differentiated into an osteogenic lineage following 28 days of cultivation in basal and osteoinductive media. The expression was higher in the cell-hydrogel composites cultured in osteoinductive media, as evidenced by increased levels of messenger RNA and protein expression of osteogenic markers as compared to basal media cultured cell-hydrogel composites. Additionally, calcium deposits were also observed, which provide additional evidence of osteogenic differentiation. The findings demonstrate that the hydrogel is biocompatible with MSCs and possesses osteoinductive capability in vitro. It may be potentially useful for osteochondral regeneration.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Humans , Osteogenesis/genetics , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Cells, Cultured , Tissue Engineering/methods , Hydrogels/chemistry , Tissue Scaffolds
3.
World J Stem Cells ; 15(7): 751-767, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37545753

ABSTRACT

BACKGROUND: Zinc (Zn) is the second most abundant trace element after Fe, present in the human body. It is frequently reported in association with cell growth and proliferation, and its deficiency is considered to be a major disease contributing factor. AIM: To determine the effect of Zn on in vitro growth and proliferation of human umbilical cord (hUC)-derived mesenchymal stem cells (MSCs). METHODS: hUC-MSCs were isolated from human umbilical cord tissue and characterized based on immunocytochemistry, immunophenotyping, and tri-lineage differentiation. The impact of Zn on cytotoxicity and proliferation was determined by MTT and Alamar blue assay. To determine the effect of Zn on population doubling time (PDT), hUC-MSCs were cultured in media with and without Zn for several passages. An in vitro scratch assay was performed to analyze the effect of Zn on the wound healing and migration capability of hUC-MSCs. A cell adhesion assay was used to test the surface adhesiveness of hUC-MSCs. Transcriptional analysis of genes involved in the cell cycle, proliferation, migration, and self-renewal of hUC-MSCs was performed by quantitative real-time polymerase chain reaction. The protein expression of Lin28, a pluripotency marker, was analyzed by immunocytochemistry. RESULTS: Zn at lower concentrations enhanced the rate of proliferation but at higher concentrations (> 100 µM), showed concentration dependent cytotoxicity in hUC-MSCs. hUC-MSCs treated with Zn exhibited a significantly greater healing and migration rate compared to untreated cells. Zn also increased the cell adhesion rate, and colony forming efficiency (CFE). In addition, Zn upregulated the expression of genes involved in the cell cycle (CDC20, CDK1, CCNA2, CDCA2), proliferation (transforming growth factor ß1, GDF5, hypoxia-inducible factor 1α), migration (CXCR4, VCAM1, VEGF-A), and self-renewal (OCT4, SOX2, NANOG) of hUC-MSCs. Expression of Lin28 protein was significantly increased in cells treated with Zn. CONCLUSION: Our findings suggest that zinc enhances the proliferation rate of hUC-MSCs decreasing the PDT, and maintaining the CFE. Zn also enhances the cell adhesion, migration, and self-renewal of hUC-MSCs. These results highlight the essential role of Zn in cell growth and development.

4.
Cartilage ; : 19476035231172154, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37139781

ABSTRACT

BACKGROUND: Oxidative stress (OS) is mainly associated with the pathogenesis of intervertebral disc (IVD) degeneration; it causes nucleus pulposus cells (NPCs) to undergo senescence and triggers autophagy and apoptosis. This study aims to evaluate the regeneration potential of extracellular vesicles (EVs) derived from human umbilical cord-mesenchymal stem cells (hUC-MSCs) in an in vitro rat NPC-induced OS model. DESIGN: NPCs were isolated from rat coccygeal discs, propagated, and characterized. OS was induced by hydrogen peroxide (H2O2), which is confirmed by 2,7-dichlorofluorescein diacetate (H2DCFDA) assay. EVs were isolated from hUC-MSCs and characterized by analyzing the vesicles using fluorescence microscope, scanning electron microscope (SEM), atomic force microscope (AFM), dynamic light scattering (DLS), and Western blot (WB). The in vitro effects of EVs on migration, uptake, and survival of NPCs were determined. RESULTS: SEM and AFM topographic images revealed the size distribution of EVs. The phenotypes of isolated EVs showed that the size of EVs was 403.3 ± 85.94 nm, and the zeta potential was -0.270 ± 4.02 mV. Protein expression analysis showed that EVs were positive for CD81 and annexin V. Treatment of NPCs with EVs reduced H2O2-induced OS as evidenced by a decrease in reactive oxygen species (ROS) levels. Co-culture of NPCs with DiI-labeled EVs showed the cellular internalization of EVs. In the scratch assay, EVs significantly increased NPC proliferation and migration toward the scratched area. Quantitative polymerase chain reaction analysis showed that EVs significantly reduced the expression of OS genes. CONCLUSION: EVs protected NPCs from H2O2-induced OS by reducing intracellular ROS generation and improved NPC proliferation and migration.

5.
Front Med (Lausanne) ; 10: 1127303, 2023.
Article in English | MEDLINE | ID: mdl-37007782

ABSTRACT

Background: Intervertebral disc (IVD) shows aging and degenerative changes earlier than any other body connective tissue. Its repair and regeneration provide a considerable challenge in regenerative medicine due to its high degree of infrastructure and mechanical complexity. Mesenchymal stem cells, due to their tissue resurfacing potential, represent many explanatory pathways to regenerate a tissue breakdown. Methods: This study was undertaken to evaluate the co-regulation of Sox9 and TGFß1 in differentiating human umbilical cord mesenchymal stem cells (hUC-MSC) into chondrocytes. The combinatorial impact of Sox9 and TGFß1 on hUC-MSCs was examined in vitro by gene expression and immunocytochemical staining. In in vivo, an animal model of IVD degeneration was established under a fluoroscopic guided system through needle puncture of the caudal disc. Normal and transfected MSCs were transplanted. Oxidative stress, pain, and inflammatory markers were evaluated by qPCR. Disc height index (DHI), water content, and gag content were analyzed. Histological examinations were performed to evaluate the degree of regeneration. Results: hUC-MSC transfected with Sox9+TGFß1 showed a noticeable morphological appearance of a chondrocyte, and highly expressed chondrogenic markers (aggrecan, Sox9, TGFß1, TGFß2, and type II collagens) after transfection. Histological observation demonstrated that cartilage regeneration, extracellular matrix synthesis, and collagen remodeling were significant upon staining with H&E, Alcian blue, and Masson's trichrome stain on day 14. Additionally, oxidative stress, pain, and inflammatory markers were positively downregulated in the animals transplanted with Sox9 and TGFß1 transfected MSCs. Conclusion: These findings indicate that the combinatorial effect of Sox9 and TGFß1 substantially accelerates the chondrogenesis in hUC-MSCs. Cartilage regeneration and matrix synthesis were significantly enhanced. Therefore, a synergistic effect of Sox9 and TGFß1 could be an immense therapeutic combination in the tissue engineering of cartilaginous joint bio-prostheses and a novel candidate for cartilage stabilization.

6.
Front Vet Sci ; 9: 762449, 2022.
Article in English | MEDLINE | ID: mdl-35937290

ABSTRACT

Clostridium perfringens produces core virulence factors that are responsible for causing hemorrhagic abomasitis and enterotoxemia making food, animals, and humans susceptible to its infection. In this study, C. perfringens was isolated from necropsied intestinal content of buffalo and cattle belonging to four major bovine-producing regions in the Punjab Province of Pakistan for the purpose offind out the genetic variation. Out of total 160 bovine samples (n: 160), thirty-three (n: 33) isolates of C. perfringens were obtained from buffalo (Bubales bubalis) and cattle (Bos indicus) that were further subjected to biochemical tests; 16S rRNA based identification and toxinotyping was done using PCR (Polymerase Chain Reaction) and PFGE (Pulse Field Gel Electrophoresis) pulsotypesfor genetic diversity. Occurrence of C. perfringens was found to be maximum in zone-IV (Bhakkar and Dera Ghazi Khan) according to the heatmap. Correlation was found to be significant and positive among the toxinotypes (α-toxin, and ε-toxin). Response surface methodology (RSM) via central composite design (CCD) and Box-Behnken design (BBD) demonstrated substantial frequency of C. perfringens based toxinotypes in all sampling zones. PFGE distinguished all isolates into 26 different pulsotypes using SmaI subtyping. Co-clustering analysis based on PFGE further decoded a diversegenetic relationship among the collected isolates. This study could help us to advance toward disease array of C. perfringens and its probable transmission and control. This study demonstrates PFGE patterns from Pakistan, and typing of C. perfringens by PFGE helps illustrate and mitigate the incidence of running pulsotypes.

7.
World J Stem Cells ; 14(2): 163-182, 2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35432734

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IVDD) is the leading cause of lower back pain. Disc degeneration is characterized by reduced cellularity and decreased production of extracellular matrix (ECM). Mesenchymal stem cells (MSCs) have been envisioned as a promising treatment for degenerative illnesses. Cell-based therapy using ECM-producing chondrogenic derivatives of MSCs has the potential to restore the functionality of the intervertebral disc (IVD). AIM: To investigate the potential of chondrogenic transcription factors to promote differentiation of human umbilical cord MSCs into chondrocytes, and to assess their therapeutic potential in IVD regeneration. METHODS: MSCs were isolated and characterized morphologically and immunologically by the expression of specific markers. MSCs were then transfected with Sox-9 and Six-1 transcription factors to direct differentiation and were assessed for chondrogenic lineage based on the expression of specific markers. These differentiated MSCs were implanted in the rat model of IVDD. The regenerative potential of transplanted cells was investigated using histochemical and molecular analyses of IVDs. RESULTS: Isolated cells showed fibroblast-like morphology and expressed CD105, CD90, CD73, CD29, and Vimentin but not CD45 antigens. Overexpression of Sox-9 and Six-1 greatly enhanced the gene expression of transforming growth factor beta-1 gene, BMP, Sox-9, Six-1, and Aggrecan, and protein expression of Sox-9 and Six-1. The implanted cells integrated, survived, and homed in the degenerated intervertebral disc. Histological grading showed that the transfected MSCs regenerated the IVD and restored normal architecture. CONCLUSION: Genetically modified MSCs accelerate cartilage regeneration, providing a unique opportunity and impetus for stem cell-based therapeutic approach for degenerative disc diseases.

8.
Mol Cell Biochem ; 476(8): 3191-3205, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33864569

ABSTRACT

Intervertebral disc (IVD) degeneration is an asymptomatic pathophysiological condition and a strong causative factor of low back pain. There is no cure available except spinal fusion and pain management. Stem cell-based regenerative medicine is being considered as an alternative approach to treat disc diseases. The current study aimed to differentiate human umbilical cord-mesenchymal stem cells (hUC-MSCs) into chondrocyte-like cells and to elucidate their feasibility and efficacy in the degenerated IVD rat model. Chondrogenic induction medium was used to differentiate hUC-MSCs into chondroprogenitors. Rat tail IVD model was established with three consecutive coccygeal discs. qPCR was performed to quantify the molecular markers of pain and inflammation. Histological staining was performed to evaluate the degree of regeneration. Induced chondroprogenitors showed the expression of chondrogenic genes, SOX9, TGF-ß1, ACAN, BMP2, and GDF5. Immunocytochemical staining showed positive expression of chondrogenic proteins SOX9, TGF-ß1, TGF-ß2, and Collagen 2. In in vivo study, transplanted chondroprogenitors showed better survival, homing, and distribution in IVD as compared to normal MSCs. Expression of pain and inflammatory genes at day 5 of cell transplantation modulated immune response significantly. The transplanted labeled MSCs and induced chondroprogenitors differentiated into functional nucleus pulposus (NP) cells as evident from co-localization of red (DiI) and green fluorescence for SOX9, TGF-ß1, and TGF-ß2. Alcian blue and H & E staining showed standard histological features, indicating better preservation of the NP structure and cellularity than degenerated discs. hUC-MSCs-derived chondroprogenitors showed better regeneration potential as compared to normal MSCs. The pain and inflammation genes were downregulated in the treated group as compared to the degenerated IVD.


Subject(s)
Chondrogenesis , Inflammation/prevention & control , Intervertebral Disc Degeneration/therapy , Intervertebral Disc/cytology , Mesenchymal Stem Cells/cytology , Pain/prevention & control , Regeneration , Animals , Cell Differentiation , Humans , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Male , Mesenchymal Stem Cell Transplantation/methods , Pain/etiology , Pain/metabolism , Pain/pathology , Rats , Rats, Wistar , Signal Transduction , Umbilical Cord/cytology
9.
Toxins (Basel) ; 13(3)2021 03 13.
Article in English | MEDLINE | ID: mdl-33805744

ABSTRACT

Clostridium perfringens is a Gram-positive bacterium that possess seven toxinotypes (A, B, C, D, E, F, and G) that are responsible for the production of six major toxins, i.e., α, ß, ε, ι, CPE, and NetB. The aim of this study is to find out the occurrence of toxinotypes in buffalo and cattle of Punjab province in Pakistan and their corresponding toxin-encoding genes from the isolated toxinotypes. To accomplish this aim, six districts in Punjab province were selected (i.e., Lahore, Sahiwal, Cheecha Watni, Bhakkar, Dera Ghazi Khan, and Bahawalpur) and a total of 240 buffalo and 240 cattle were selected for the collection of samples. From isolation and molecular analysis (16S rRNA), it was observed that out of seven toxinotypes (A-G), two toxinotypes (A and D) were found at most, whereas other toxinotypes, i.e., B, C, E, F, and G, were not found. The most frequently occurring toxinotype was type A (buffalo: 149/240; cattle: 157/240) whereas type D (buffalo: 8/240 cattle: 7/240) was found to occur the least. Genes encoding toxinotypes A and D were cpa and etx, respectively, whereas genes encoding other toxinotypes were not observed. The occurrence of isolated toxinotypes was studied using response surface methodology, which suggested a considerable occurrence of the isolated toxinotypes (A and D) in both buffalo and cattle. Association between type A and type D was found to be significant among the isolated toxinotypes in both buffalo and cattle (p ≤ 0.05). Correlation was also found to be positive and significant between type A and type D. C. perfringens exhibits a range of toxinotypes that can be diagnosed via genotyping, which is more reliable than classical toxinotyping.


Subject(s)
Bacterial Toxins/genetics , Buffaloes/microbiology , Cattle/microbiology , Clostridium perfringens/genetics , Gene Expression Profiling , Toxicogenetics , Transcriptome , Animals , Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Clostridium perfringens/metabolism , Gene Expression Regulation, Bacterial , Pakistan , Ribotyping
10.
World J Stem Cells ; 13(12): 1881-1904, 2021 Dec 26.
Article in English | MEDLINE | ID: mdl-35069988

ABSTRACT

Lower back pain is a leading cause of disability and is one of the reasons for the substantial socioeconomic burden. The etiology of intervertebral disc (IVD) degeneration is complicated, and its mechanism is still not completely understood. Factors such as aging, systemic inflammation, biochemical mediators, toxic environmental factors, physical injuries, and genetic factors are involved in the progression of its pathophysiology. Currently, no therapy for restoring degenerated IVD is available except pain management, reduced physical activities, and surgical intervention. Therefore, it is imperative to establish regenerative medicine-based approaches to heal and repair the injured disc, repopulate the cell types to retain water content, synthesize extracellular matrix, and strengthen the disc to restore normal spine flexion. Cellular therapy has gained attention for IVD management as an alternative therapeutic option. In this review, we present an overview of the anatomical and molecular structure and the surrounding pathophysiology of the IVD. Modern therapeutic approaches, including proteins and growth factors, cellular and gene therapy, and cell fate regulators are reviewed. Similarly, small molecules that modulate the fate of stem cells for their differentiation into chondrocytes and notochordal cell types are highlighted.

11.
Med Hypotheses ; 83(1): 39-46, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24785461

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a progressive brain disorder, which gradually and irreversibly destroys the intellectual and cognitive abilities of the brain. Heat shock protein 90 (Hsp90α) is a molecular chaperone which was found to regulate the function of number of client proteins including tau that is involved in the cause of the AD. Inhibition of Hsp90α by C-Terminal domain (CTD) ATP binding-site blockage might be used as an effective treatment strategy against the disease via degradation of tau proteins that are involved in the progression of the disease. Till date, a variety of drugs have been identified as Hsp90α inhibitors, which include Novobiocin, Clorobiocin, Epigallocatechingallate (EGCG) and Derrubone. However, which drug among the four binds to the CTD ATP binding site strongly and what are the specific residue responsible for such binding, have not been reported so far. HYPOTHESIS: We hypothesize that binding site for ATP of Hsp90α CTD contains multiple ATP binding sites. We also hypothesize that a drug which can bind to the ATP binding site of CTD strongly can inhibit Hsp90α function which is in turn redirects towards the proteasomal degradation of diseased client protein like tau in AD. Such inhibition will find a novel therapeutic approach in the treatment of AD. EXPERIMENTAL DESIGN: The identification of ATP binding site of Hsp90α CTD was done using various software tools like Hex 6.3, CastP, protein Hydrophobicity plots, ATPint and LigPlot+ v.1.4.5. Docking experiments were conducted between Hsp90αCTD and its inhibitors at these ATP binding site using the Autodock 4.0. The docking energies were further compared to obtain the most effective Hsp90α inhibitor of CTD. RESULTS: From our experiments, Leucine (Leu) 665, Leu 666 and Leu 694 were predicted to be located in CTD ATP binding site. Furthermore, docking studies were performed of various Hsp90α inhibitors like Novobiocin, Clorobiocin, Epigallocatechingallate (EGCG) and Derrubone with the previously recognized ATP binding residues of CTD i.e. Leu 665, Leu 666 and Leu 694. The docking results of Derrubone showed the highest binding energy at all the three sites of ATP interaction. Additionally, Derrubone showed the best binding energy at Leu 666 (-7.53kcal/mol) compared to Leu 665 (-7.20kcal/mol) and Leu 694 (-6.67kcal/mol). CONCLUSION: Based on our findings, we propose that the recognized sites i.e. Leu665, Leu 666 and Leu694 could possibly be the binding sites of Hsp90α CTD for ATP and the Hsp90 inhibitors. It was predicted that Derrubone could bind with CTD of Hsp90α strongly and resulted tau protein degradation which might be considered to be a therapeutic approach in AD.


Subject(s)
Adenosine Triphosphate/metabolism , Alzheimer Disease/therapy , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Binding Sites , Computer Simulation , HSP90 Heat-Shock Proteins/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL