Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
AIMS Microbiol ; 10(3): 468-488, 2024.
Article in English | MEDLINE | ID: mdl-39219759

ABSTRACT

Infections caused by bacteria originating from tainted food sources are a widespread concern due to their large economic impact and detrimental effects on public health. We aimed to explore literature focusing on the presence of Salmonella in the food supply chains of Gulf Cooperation Council (GCC) countries and to provide an overview of available information concerning health-related issues and the status of salmonellosis in humans in GCC countries. The reviewed evidence underscored a gap in our comprehensive understanding of the prevalence of Salmonella in the food supply of GCC countries. Molecular characterization efforts to pinpoint the sources of Salmonella in these nations were limited. Surveys targeting Salmonella in the food supply of GCC countries have been infrequent. While qualitative data indicated the presence or absence of Salmonella, there was a noticeable lack of quantitative data detailing the actual quantities of these bacteria in chicken meat supplies across GCC countries. Although reports regarding Salmonella in animal-derived foods were common, the literature highlighted in this review emphasized the persistent challenge that Salmonella pose to food safety and public health in GCC countries. Addressing this issue requires concerted efforts to enhance surveillance, improve control measures, and promote greater awareness among stakeholders in the food supply chain.

2.
Biomimetics (Basel) ; 9(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39194435

ABSTRACT

Microbial synthesis offers a sustainable and eco-friendly approach for nanoparticle production. This study explores the biogenic synthesis of zinc oxide nanoparticles (ZnO-NPs) utilizing the actinomycete Saccharopolyspora hirsuta (Ess_amA6) isolated from Tapinoma simrothi. The biosynthesized ZnO-NPs were characterized using various techniques to confirm their formation and properties. UV-visible spectroscopy revealed a characteristic peak at 372 nm, indicative of ZnO-NPs. X-ray diffraction (XRD) analysis confirmed the crystalline structure of the ZnO-NPs as hexagonal wurtzite with a crystallite size of approximately 37.5 ± 13.60 nm. Transmission electron microscopy (TEM) analysis showed the presence of both spherical and roughly hexagonal ZnO nanoparticles in an agglomerated state with a diameter of approximately 44 nm. The biogenic ZnO-NPs exhibited promising biomedical potential. They demonstrated selective cytotoxic activity against human cancer cell lines, demonstrating higher efficacy against Hep-2 cells (IC50 = 73.01 µg/mL) compared to MCF-7 cells (IC50 = 112.74 µg/mL). Furthermore, the biosynthesized ZnO-NPs displayed broad-spectrum antimicrobial activity against both Pseudomonas aeruginosa and Staphylococcus aureus with clear zones of inhibition of 12.67 mm and 14.33 mm, respectively. The MIC and MBC values against P. aeruginosa and S. aureus ranged between 12.5 and 50 µg/mL. These findings suggest the potential of S. hirsuta-mediated ZnO-NPs as promising biocompatible nanomaterials with dual applications as antimicrobial and anticancer agents.

3.
Foods ; 13(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39123630

ABSTRACT

Contamination of leafy greens with Staphylococcus spp. can occur at various supply chain stages, from farm to table. This study comprehensively analyzes the species diversity, antimicrobial resistance, and virulence factors of Staphylococci in salad vegetables from markets in the United Arab Emirates (UAE). A total of 343 salad items were sampled from three major cities in the UAE from May 2022 to February 2023 and tested for the presence of Staphylococcus spp. using standard culture-based methods. Species-level identification was achieved using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Antimicrobial susceptibility testing was conducted using the VITEK-2 system with AST-P592 cards. Additionally, whole genome sequencing (WGS) of ten selected isolates was performed to characterize antimicrobial resistance determinants and toxin-related virulence factors. Nine Staphylococcus species were identified in 37.6% (129/343) of the tested salad items, with coagulase-negative staphylococci (CoNS) dominating (87.6% [113/129]) and S. xylosus being the most prevalent (89.4% [101/113]). S. aureus was found in 4.6% (14/343) of the salad samples, averaging 1.7 log10 CFU/g. One isolate was confirmed as methicillin-resistant S. aureus, harboring the mecA gene. It belonged to multi-locus sequence type ST-672 and spa type t384 and was isolated from imported fresh dill. Among the characterized S. xylosus (n = 45), 13.3% tested positive in the cefoxitin screen test, and 6.6% were non-susceptible to oxacillin. WGS analysis revealed that the cytolysin gene (cylR2) was the only toxin-associated factor found in S. xylosus, while a methicillin-sensitive S. aureus isolate harbored the Panton-Valentine Leukocidin (LukSF/PVL) gene. This research is the first to document the presence of methicillin-resistant S. aureus in the UAE food chain. Furthermore, S. xylosus (a coagulase-negative staphylococcus not commonly screened in food) has demonstrated phenotypic resistance to clinically relevant antimicrobials. This underscores the need for vigilant monitoring of antimicrobial resistance in bacterial contaminants, whether pathogenic or commensal, at the human-food interface.

4.
Int J Mol Sci ; 25(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39201301

ABSTRACT

The ever-increasing presence of micropollutants necessitates the development of environmentally friendly bioremediation strategies. Inspired by the remarkable versatility and potent catalytic activities of microbial enzymes, researchers are exploring their application as biocatalysts for innovative environmental cleanup solutions. Microbial enzymes offer remarkable substrate specificity, biodegradability, and the capacity to degrade a wide array of pollutants, positioning them as powerful tools for bioremediation. However, practical applications are often hindered by limitations in enzyme stability and reusability. Enzyme immobilization techniques have emerged as transformative strategies, enhancing enzyme stability and reusability by anchoring them onto inert or activated supports. These improvements lead to more efficient pollutant degradation and cost-effective bioremediation processes. This review delves into the diverse immobilization methods, showcasing their success in degrading various environmental pollutants, including pharmaceuticals, dyes, pesticides, microplastics, and industrial chemicals. By highlighting the transformative potential of microbial immobilized enzyme biocatalysts, this review underscores their significance in achieving a cleaner and more sustainable future through the mitigation of micropollutant contamination. Additionally, future research directions in areas such as enzyme engineering and machine learning hold immense promise for further broadening the capabilities and optimizing the applications of immobilized enzymes in environmental cleanup.


Subject(s)
Biodegradation, Environmental , Environmental Pollutants , Enzymes, Immobilized , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Environmental Pollutants/metabolism , Biocatalysis , Bacteria/enzymology
5.
Biomimetics (Basel) ; 9(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39056866

ABSTRACT

In light of rising public health threats like antifungal and antimicrobial resistance, alongside the slowdown in new antimicrobial development, biomimetics have shown promise as therapeutic agents. Multidrug-resistant fungi pose significant challenges as they quickly develop resistance, making traditional antifungals less effective. Developing new antifungals is also complicated by the need to target eukaryotic cells without harming the host. This review examines biomimetic antifungal materials that mimic natural biological mechanisms for targeted and efficient action. It covers a range of agents, including antifungal peptides, alginate-based antifungals, chitosan derivatives, nanoparticles, plant-derived polyphenols, and probiotic bacteria. These agents work through mechanisms such as disrupting cell membranes, generating reactive oxygen species, and inhibiting essential fungal processes. Despite their potential, challenges remain in terms of ensuring biocompatibility, optimizing delivery, and overcoming potential resistance. Production scalability and economic viability are also concerns. Future research should enhance the stability and efficacy of these materials, integrate multifunctional approaches, and develop sophisticated delivery systems. Interdisciplinary efforts are needed to understand interactions between these materials, fungal cells, and the host environment. Long-term health and environmental impacts, fungal resistance mechanisms, and standardized testing protocols require further study. In conclusion, while biomimetic antifungal materials represent a revolutionary approach to combating multidrug-resistant fungi, extensive research and development are needed to fully realize their potential.

6.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892312

ABSTRACT

The paradigm of regenerative medicine is undergoing a transformative shift with the emergence of nanoengineered silica-based biomaterials. Their unique confluence of biocompatibility, precisely tunable porosity, and the ability to modulate cellular behavior at the molecular level makes them highly desirable for diverse tissue repair and regeneration applications. Advancements in nanoengineered silica synthesis and functionalization techniques have yielded a new generation of versatile biomaterials with tailored functionalities for targeted drug delivery, biomimetic scaffolds, and integration with stem cell therapy. These functionalities hold the potential to optimize therapeutic efficacy, promote enhanced regeneration, and modulate stem cell behavior for improved regenerative outcomes. Furthermore, the unique properties of silica facilitate non-invasive diagnostics and treatment monitoring through advanced biomedical imaging techniques, enabling a more holistic approach to regenerative medicine. This review comprehensively examines the utilization of nanoengineered silica biomaterials for diverse applications in regenerative medicine. By critically appraising the fabrication and design strategies that govern engineered silica biomaterials, this review underscores their groundbreaking potential to bridge the gap between the vision of regenerative medicine and clinical reality.


Subject(s)
Biocompatible Materials , Regenerative Medicine , Silicon Dioxide , Tissue Engineering , Silicon Dioxide/chemistry , Regenerative Medicine/methods , Humans , Biocompatible Materials/chemistry , Animals , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Drug Delivery Systems/methods
7.
Foods ; 13(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38890858

ABSTRACT

Veterinary medications are necessary for both contemporary animal husbandry and food production, but their residues can linger in foods obtained from animals and pose a dangerous human risk. In this review, we aim to highlight the sources, occurrence, human exposure pathways, and human health effects of drug residues in food-animal products. Following the usage of veterinary medications, pharmacologically active compounds known as drug residues can be found in food, the environment, or animals. They can cause major health concerns to people, including antibiotic resistance development, the development of cancer, teratogenic effects, hypersensitivity, and disruption of normal intestinal flora. Drug residues in animal products can originate from variety of sources, including water or food contamination, extra-label drug use, and ignoring drug withdrawal periods. This review also examines how humans can be exposed to drug residues through drinking water, food, air, and dust, and discusses various analytical techniques for identifying these residues in food. Furthermore, we suggest some potential solutions to prevent or reduce drug residues in animal products and human exposure pathways, such as implementing withdrawal periods, monitoring programs, education campaigns, and new technologies that are crucial for safeguarding public health. This review underscores the urgency of addressing veterinary drug residues as a significant and emerging public health threat, calling for collaborative efforts from researchers, policymakers, and industry stakeholders to develop sustainable solutions that ensure the safety of the global food supply chain.

8.
Mycopathologia ; 189(3): 40, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704798

ABSTRACT

Candida parapsilosis complex has recently received special attention due to naturally occurring FKS1 polymorphism associated with high minimal inhibitory concentrations for echinocandin and the increase of clonal outbreaks of strains resistant to commonly used antifungals such as fluconazole. Despite the previous fact, little is known about the genetic mechanism associated with echinocandin resistance. Therefore, the present study was designed to investigate the mechanism of acquired echinocandin resistance in C. parapsilosis complex strains. A total of 15 clinical C. parapsilosis complex isolates were sub-cultured for 30 days at a low concentration of micafungin at ½ the lowest MIC value of the tested isolates (0.12 µg/ml). After culturing, all the isolates were checked phenotypically for antifungal resistance and genotypically for echinocandin resistance by checking FKS1 gene hot spot one (HS1) and HS2 mutations. In vitro induction of echinocandin resistance confirmed the rapid development of resistance at low concentration micafungin, with no difference among C. parapsilosis, C. metapsilosis, and C. orthopsilosis in the resistance development. For the first time we identified different FKS1 HS1 and or HS2 mutations responsible for echinocandin resistance such as R658S and L1376F in C. parapsilosis, S656X, R658X, R658T, W1370X, X1371I, V1371X, and R1373X (corresponding to their location in C. parapsilosis) in C. metapsilosis, and L648F and R1366H in C. orthopsilosis. Our results are of significant concern, since the rapid development of resistance may occur clinically after short-term exposure to antifungals as recently described in other fungal species with the potential of untreatable infections.


Subject(s)
Antifungal Agents , Candida parapsilosis , Drug Resistance, Fungal , Echinocandins , Glucosyltransferases , Humans , Antifungal Agents/pharmacology , Candida parapsilosis/genetics , Candida parapsilosis/drug effects , Candidiasis/microbiology , Drug Resistance, Fungal/genetics , Echinocandins/pharmacology , Fungal Proteins/genetics , Glucosyltransferases/genetics , Micafungin/pharmacology , Microbial Sensitivity Tests , Mutation , Mutation, Missense
9.
Int J Mol Sci ; 25(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38255813

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a new coronavirus in the Coronaviridae family. The COVID-19 pandemic, caused by SARS-CoV-2, has undoubtedly been the largest crisis of the twenty-first century, resulting in over 6.8 million deaths and 686 million confirmed cases, creating a global public health issue. Hundreds of notable articles have been published since the onset of this pandemic to justify the cause of viral spread, viable preventive measures, and future therapeutic approaches. As a result, this review was developed to provide a summary of the current anti-COVID-19 drugs, as well as their timeline, molecular mode of action, and efficacy. It also sheds light on potential future treatment options. Several medications, notably hydroxychloroquine and lopinavir/ritonavir, were initially claimed to be effective in the treatment of SARS-CoV-2 but eventually demonstrated inadequate activity, and the Food and Drug Administration (FDA) withdrew hydroxychloroquine. Clinical trials and investigations, on the other hand, have demonstrated the efficacy of remdesivir, convalescent plasma, and monoclonal antibodies, 6-Thioguanine, hepatitis C protease inhibitors, and molnupiravir. Other therapeutics, including inhaled medicines, flavonoids, and aptamers, could pave the way for the creation of novel anti-COVID-19 therapies. As future pandemics are unavoidable, this article urges immediate action and extensive research efforts to develop potent specialized anti-COVID-19 medications.


Subject(s)
COVID-19 , Cyclonic Storms , United States , Humans , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Pandemics , SARS-CoV-2
10.
Int J Mol Sci ; 24(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37834266

ABSTRACT

A novel derivative of ciprofloxacin (Cpx) was synthesized and characterized using various analytical techniques, including FT-IR spectroscopy, UV-Vis spectroscopy, TEM and SEM analysis, 1H NMR, 13C NMR, and HPLC analysis. The newly prepared Cpx derivative (Cpx-Drv) exhibited significantly enhanced antibacterial properties compared to Cpx itself. In particular, Cpx-Drv demonstrated a 51% increase in antibacterial activity against S. aureus and a 30% improvement against B. subtilis. It displayed potent inhibitory effects on topoisomerases II (DNA gyrase and topoisomerase IV) as potential molecular targets, with IC50 values of 6.754 and 1.913 µg/mL, respectively, in contrast to Cpx, which had IC50 values of 2.125 and 0.821 µg/mL, respectively. Docking studies further supported these findings, showing that Cpx-Drv exhibited stronger binding interactions with the gyrase enzyme (PDB ID: 2XCT) compared to the parent Cpx, with binding affinities of -10.3349 and -7.7506 kcal/mole, respectively.


Subject(s)
Ciprofloxacin , Staphylococcus aureus , Ciprofloxacin/pharmacology , Ciprofloxacin/chemistry , Chromatography, High Pressure Liquid , Spectroscopy, Fourier Transform Infrared , Microbial Sensitivity Tests , Anti-Bacterial Agents/chemistry , DNA Gyrase , Molecular Docking Simulation , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry
11.
Int J Food Microbiol ; 398: 110224, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37167788

ABSTRACT

The occurrence and counts of extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli in retail chicken sold in the United Arab Emirates (UAE) were investigated in this study. Results indicated that 79.68 % of chicken carcasses (251/315) sampled from UAE supermarkets harbored ESBL-producing E. coli. About half (51.75 % [163/315]) of the tested samples had an ESBL-producing E. coli count range between ≥3 log10 and < 5 log10 CFU/g. The antimicrobial resistance profiles of a subset of 100 isolates showed high rates of non-susceptibility to clinically significant antibiotics, particularly ciprofloxacin (80 %) and cefepime (46 %). Moreover, 7 % of the isolates exhibited resistance to colistin, with PCR-based screening revealing the presence of the mcr-1 gene in all colistin-resistant isolates. Multiplex PCR screening identified blaCTX-M and blaTEM genes as the most frequently presented genes among the phenotypically confirmed ESBL-producing E. coli. Further whole-genome sequencing and bioinformatic analysis of 27 ESBL-producing E. coli isolates showed that the gene family blaCTX group 1 was the most prevalent, notably CTX-M-55 (55.55 % [15/27]), followed by CTX-M-15 (22.22 % [6/27]). The most common sequence types (STs) were ST359 and ST1011, with three evident clusters identified based on phylogenomic analysis, aligned with isolates from specific production companies. Analysis of plasmid incompatibility types revealed IncFIB, IncFII, Incl2, and IncX1 as the most commonly featured plasmids. The findings of this study indicate a noticeable prevalence and high counts of ESBL-producing E. coli in chicken sampled from supermarkets in the UAE. The high rates of antimicrobial resistance to clinically important antibiotics highlight the potential public health risk associated with consuming chicken contaminated with ESBL-producing E. coli. Overall, this study emphasizes the importance of continued antimicrobial resistance monitoring in the UAE food chain and calls for further exposure risk assessment of the consumption of ESBL-producing E. coli via chicken meat.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Animals , Escherichia coli , Anti-Bacterial Agents/pharmacology , Chickens/genetics , Colistin , Supermarkets , United Arab Emirates , beta-Lactamases/genetics , Drug Resistance, Bacterial/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Genomics , Plasmids , Meat
12.
J Fungi (Basel) ; 10(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38276020

ABSTRACT

Non-albicans Candida infections have recently gained worldwide attention due to their intrinsic resistance to different antifungal agents and the limited therapeutic options for treating them. Although the Candida parapsilosis complex is reported to be the second or third most prevalent Candida spp., little information is available on the prevalence of antifungal resistance along with genotyping of the C. parapsilosis complex. In this study, we aimed to evaluate the prevalence of antifungal resistance, the genetic basis of such resistance, and the genotyping of C. parapsilosis complex isolates that were recovered from hospitalized patients in Japan from 2005 to 2019. Our results indicated that, with the exception of one single C. metapsilosis isolate that was dose-dependently susceptible to fluconazole, all other isolates were susceptible or showed wild phenotypes to all tested antifungals, including azoles, echinocandins, amphotericin B, and flucytosine. Molecular analyses for azole and echinocandin resistance via evaluating ERG11 mutation and FKS1 hotspot one (HS1) and hotspot two (HS2) mutations, respectively, confirmed the phenotypic results. Genotyping of our isolates confirmed that they belong to 53 different but closely related genotypes, with a similarity percentage of up to 90%. Our results are of significant concern, since understanding the genetic basis of echinocandin resistance in the C. parapsilosis complex as well their genotyping is essential for directing targeted therapy, identifying probable infection sources, and developing strategies for overcoming epidemic spread.

13.
Animals (Basel) ; 12(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36009674

ABSTRACT

This study aimed to investigate a sheeppox outbreak in a highly susceptible naive sheep population in Kharsit village, Gharbia Governorate, Egypt. Moreover, to compare commercial sheeppox vaccines, the Romanian strain and RM-65 vaccines, as emergency vaccination against sheeppox under field conditions. In December 2018, a sheeppox outbreak occurred in a flock of 65 sheep upon the purchase of an apparently healthy ewe from outside the village. This ewe showed a systemic disease with cutaneous lesions after a few days, thereafter more cases began to appear. Cutaneous lesions in other sheep in the flock in the form of macules, papules, and scabs were common in wool-less areas of the body, in addition to fever and respiratory disorders. Postmortem findings revealed the congestion of visceral organs with apparent gross pathology of the lung. Biopsies of cutaneous lesions and visceral organs were collected, and sheeppox was identified by histopathology and transmission electron microscopy, which showed the existence of sheeppox cells and intracytoplasmic brick-shape sheeppox virions. The Romanian strain and RM-65 vaccines were used for the emergency vaccination for two different groups of animals and the third group was left as a control group. Serum samples were collected before vaccination as well as 21 days post-vaccination, and serum protein fractionation analysis was performed for all groups. The outbreak ended after 2.5 months, the cumulative incidence was 66.2%, and the overall case fatality was 51.1%. There was significantly higher protection against sheeppox infection and mortalities among RM-65 vaccine immunized group compared to Romanian strain vaccine-immunized animals at p < 0.05. RM-65-vaccinated animals did not show sheeppox cases or mortalities, compared to Romanian strain-vaccinated animals, which had mild pox signs in 78% of animals and case fatality of 35.7%. The serum protein analysis also indicated the superior performance of the RM-65 vaccine; it increased the level of α1-globulin and ß-globulin compared to the Romanian strain, which increased the level of ß-globulin only. The current study shows a better performance of the tested RM-65 than the Romanian strain vaccine for emergency vaccination against sheeppox under field conditions. These findings point to the validity of emergency vaccination against sheeppox and the importance of the comparative field evaluation of vaccines; however, wide-scale studies are required for further evaluation. Future investigation of whether the Romanian strain itself or vaccine-production-related issues are responsible for these findings is required.

14.
Pathogens ; 11(7)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35889961

ABSTRACT

Bovine tuberculosis is a serious infectious disease affecting a wide range of domesticated and wild animals, representing a worldwide economic and public health burden. The disease is caused by Mycobacteriumbovis and infrequently by other pathogenic mycobacteria. The problem of bovine tuberculosis is complicated when the infection is associated with multidrug and extensively drug resistant M. bovis. Many techniques are used for early diagnosis of bovine tuberculosis, either being antemortem or postmortem, each with its diagnostic merits as well as limitations. Antemortem techniques depend either on cellular or on humoral immune responses, while postmortem diagnosis depends on adequate visual inspection, palpation, and subsequent diagnostic procedures such as bacterial isolation, characteristic histopathology, and PCR to reach the final diagnosis. Recently, sequencing and bioinformatics tools have gained increasing importance for the diagnosis of bovine tuberculosis, including, but not limited to typing, detection of mutations, phylogenetic analysis, molecular epidemiology, and interactions occurring within the causative mycobacteria. Consequently, the current review includes consideration of bovine tuberculosis as a disease, conventional and recent diagnostic methods, and the emergence of MDR-Mycobacterium species.

15.
Clin Microbiol Infect ; 28(2): 302.e5-302.e8, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34687855

ABSTRACT

OBJECTIVES: To assess the prevalence and genetic basis of antifungal resistance mechanisms as well as the genotyping of Candida tropicalis from clinical and non-clinical sources in Japan. METHODS: Eighty C. tropicalis isolates, including 32 clinical isolates recovered from 29 patients and 48 non-clinical isolates recovered from 24 different sources (animals and the environment) were evaluated. All isolates were tested phenotypically for resistance to a wide range of antifungals and genotypically for resistance mechanisms to azole and echinocandin. Furthermore, all the isolates were genotyped by multilocus sequence typing (MLST). RESULTS: Phenotypically, 30.2% (16/53) of the isolates were azole-resistant, with high levels of azole resistance among clinical isolates (51.7%; 15/29) and low levels (4.2%; 1/24) among non-clinical isolates. None of the isolates were reported as echinocandin resistant, with 60.4% (32/53) of the isolates intermediate to caspofungin. Azole resistance was basically attributed to high expression levels of drug efflux transporter genes (CDR2 and CDR3), transcription factors (TAC1 and UPC2) and ergosterol biosynthesis pathway HMG gene. No FKS1 hot spot 1 (HS1) or HS2 missense mutations were detected in any of the isolates. MLST analysis revealed 36 different sequence types (STs), with the first identification of 23 new STs. Phylogenetic analysis confirmed the close relationship between the clinical and non-clinical isolates, with identifications of ST232 and ST933 among patients and marine mammals. CONCLUSION: Our results confirmed the emergence of azole resistance in C. tropicalis in Japan. Furthermore, phylogenetic analysis confirmed the transboundary dissemination and cross-transmission of C. tropicalis between humans and animals.


Subject(s)
Azoles , Candida tropicalis , Animals , Antifungal Agents/pharmacology , Azoles/pharmacology , Candida tropicalis/genetics , Drug Resistance, Fungal , Echinocandins/pharmacology , Genotype , Humans , Japan/epidemiology , Microbial Sensitivity Tests , Multilocus Sequence Typing , Phylogeny
16.
Antimicrob Agents Chemother ; 66(2): e0185621, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34871096

ABSTRACT

This study was designed to evaluate the prevalence of antifungal resistance, genetic mechanisms associated with in vitro induction of azole and echinocandin resistance and genotyping of Candida krusei, which is intrinsically resistant to fluconazole and is recovered from clinical and nonclinical sources from different countries. Our results indicated that all the isolates were susceptible or had the wild phenotype (WT) to azoles, amphotericin B, and only 1.27% showed non-WT for flucytosine. Although 70.88% of the isolates were resistant to caspofungin, none of them were categorized as echinocandin-resistant as all were susceptible to micafungin and no FKS1 hot spot 1 (HS1) or HS2 mutations were detected. In vitro induction of azole and echinocandin resistance confirmed the rapid development of resistance at low concentrations of fluconazole (4 µg/ml), voriconazole (0.06 µg/ml), and micafungin (0.03 µg/ml), with no difference between clinical and nonclinical isolates in the resistance development. Overexpression of ABC1 gene and FKS1 HS1 mutations were the major mechanisms responsible for azole and echinocandin resistance, respectively. Genotyping of our 79 isolates coupled with 217 other isolates from different sources and geography confirmed that the isolates belong to two main subpopulations, with isolates from human clinical material and Asia being more predominant in cluster 1, and environmental and animals isolates and those from Europe in cluster 2. Our results are of critical concern, since realizing that the C. krusei resistance mechanisms and their genotyping are crucial for guiding specific therapy and for exploring the potential infection source.


Subject(s)
Azoles , Echinocandins , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Azoles/pharmacology , Drug Resistance, Fungal/genetics , Echinocandins/pharmacology , Genotype , Microbial Sensitivity Tests , Pichia , Prevalence
17.
Animals (Basel) ; 11(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34438714

ABSTRACT

During the last decade's increase of antimicrobial resistance (AMR) in animals, animal-human transmission has become a major threat. Therefore, the present study aimed to evaluate the genetic basis of AMR in Gram-negative bacteria recovered from sheep and goats with respiratory disease. Nasal and ocular swabs were collected from 69 diseased animals, and 76 Gram-negative bacterial isolates were identified from 59 animals. All isolates were checked phenotypically for resistance and genotypically for different resistance mechanisms, including ß-lactam, quinolone, and aminoglycoside resistance. Our results demonstrated that 9.2% (95% CI 4.5-17.8%) of the isolates were multidrug-resistant, with high resistance rates to ß-lactams and quinolones, and 11.8% (95% CI 6.4-21%) and 6.6% (95% CI 2.8-14.5%) of the isolates were phenotypically positive for AmpC and ESBL, respectively. Genotypically, blaTEM was the most identified ß-lactamase encoding gene in 29% (95% CI 20-40%) of the isolates, followed by blaSHV (14.5%, 95% CI 8.3-24.1%) and blaCTX-M (4%, 95% CI 1.4-11%). Furthermore, 7.9% (95% CI 3.7-16.2%) of the isolates harbored plasmid-mediated quinolone resistance gene qnrS. Our study revealed for the first time to our knowledge high ß-lactam and quinolone resistance associated with the bacteria recovered from sheep and one goat with respiratory disease. Furthermore, different antimicrobial resistant determinants were identified for the first time from animals in Africa, such as blaLEN-13/55, blaTEM-176 and blaTEM-198/214. This study highlights the potential role of sheep and goats in disseminating AMR determinants and/or resistant bacteria to humans. The study regenerates interest for the development of a One Health approach to combat this formidable problem.

18.
J Fungi (Basel) ; 7(2)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540778

ABSTRACT

This study was designed to analyze the interaction of 21 antifungal combinations consisting of seven major antifungal agents against 11 echinocandin- susceptible and six-resistant C. glabrata isolates. The combinations were divided into five major groups and were evaluated by checkerboard, disc diffusion, and time-killing assays. Synergy based on the fractional inhibitory concentration index of ≤0.50 was observed in 17.65-29.41% of the cases for caspofungin combinations with azoles or amphotericin B. Amphotericin B combination with azoles induced synergistic interaction in a range of 11.76-29.41%. Azole combinations and 5-flucytosine combinations with azoles or amphotericin B did not show synergistic interactions. None of the 21 combinations showed antagonistic interactions. Interestingly, 90% of the detected synergism was among the echinocandin-resistant isolates. Disk diffusion assays showed that the inhibition zones produced by antifungal combinations were equal to or greater than those produced by single drugs. The time-killing assay showed the synergistic action of caspofungin combination with fluconazole, voriconazole, and posaconazole, and the amphotericin B-5-flucytosine combination. Furthermore, for the first time, this assay confirmed the fungicidal activity of caspofungin-voriconazole and amphotericin B-5-flucytosine combinations. The combination interactions ranged from synergism to indifference and, most importantly, no antagonism was reported and most of the synergistic action was among echinocandin-resistant isolates.

19.
J Infect Chemother ; 27(6): 834-839, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33582033

ABSTRACT

INTRODUCTION: Infections with Candida glabrata have recently gained worldwide attention owing to its association with long hospitalizations and high mortality rates. This problem is highlighted when the infection is associated with echinocandin resistance, which is used for first-line therapy. Echinocandin resistance is exclusively attributed to functional mutations in FKS genes, and especially in hot spot (HS) regions. Unfortunately, few studies have focused on the rapid identification of FKS mutations associated with echinocandin resistance in C. glabrata. This study was intended to evaluate and validate the use of Surveyor nuclease assay (SN) for detection of FKS gene mutations. METHODS: SN was evaluated against three segments of FKS1 and FKS2 genes including whole gene, regions including all HSs, and the region including only HS1. RESULTS: Our results showed that SN results are basically dependent on the type of gene as well as the segment type. Interestingly, SN can detect mutations in the region containing HS1 in both FKS1 and FKS2 genes. Furthermore, SN can detect mutations in the segment containing all HS regions for FKS1 but not FKS2. SN was unable to detect mutations in the whole FKS1 and FKS2 genes. CONCLUSIONS: As far as we know, this is the first study to validate SN for rapid identification of FKS gene mutations. This assay could be used as a sample for rapid identification of mutations associated with HS1 region in FKS genes, which have a predominant role for echinocandin resistance induction in C. glabrata.


Subject(s)
Candida glabrata , Drug Resistance, Fungal , Antifungal Agents/therapeutic use , Candida glabrata/genetics , Echinocandins , Fungal Proteins/genetics , Glucosyltransferases/genetics , Humans , Microbial Sensitivity Tests , Mutation
20.
Sci Rep ; 11(1): 3347, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558604

ABSTRACT

Antimicrobial resistance within pets has gained worldwide attention due to pets close contact with humans. This report examined at the molecular level, the antimicrobial resistance mechanisms associated with kennel cough and cat flu. 1378 pets in total were assessed for signs of respiratory infection, and nasal and conjunctival swabs were collected across 76 diseased animals. Phenotypically, 27% of the isolates were characterized by multidrug resistance and possessed high levels of resistance rates to ß-lactams. Phenotypic ESBLs/AmpCs production were identified within 40.5% and 24.3% of the isolates, respectively. Genotypically, ESBL- and AmpC-encoding genes were detected in 33.8% and 10.8% of the isolates, respectively, with blaSHV comprising the most identified ESBL, and blaCMY and blaACT present as the AmpC with the highest levels. qnr genes were identified in 64.9% of the isolates, with qnrS being the most prevalent (44.6%). Several antimicrobial resistance determinants were detected for the first time within pets from Africa, including blaCTX-M-37, blaCTX-M-156, blaSHV-11, blaACT-23, blaACT25/31, blaDHA-1, and blaCMY-169. Our results revealed that pets displaying symptoms of respiratory illness are potential sources for pathogenic microbes possessing unique resistance mechanisms which could be disseminated to humans, thus leading to the development of severe untreatable infections in these hosts.


Subject(s)
Cat Diseases , Dog Diseases , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , beta-Lactam Resistance/genetics , Animals , Cat Diseases/genetics , Cat Diseases/microbiology , Cats , Dog Diseases/genetics , Dog Diseases/microbiology , Dogs , Egypt , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacterial Infections/genetics , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL