Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochem Anal ; 35(4): 690-707, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38212263

ABSTRACT

INTRODUCTION: This research explores sustainable applications for waste generated from fenugreek (Trigonella foenum-graecum), a plant with both nutritional and medicinal uses. The study specifically targets waste components as potential sources of nutrients and bioactive compounds. OBJECTIVES: The focus is to conduct detailed metabolic profiling of fenugreek waste, assess its anti-inflammatory properties by studying its cyclooxygenase (COX) inhibitory effect, and correlate this effect to the metabolite fingerprint. MATERIALS AND METHODS: Ethanolic extracts of fenugreek fruit pericarp and a combination of leaves and stems were subjected to untargeted metabolic profiling using liquid chromatography-mass spectrometry integrated with online database searches and molecular networking as an effective dereplication strategy. The study also scrutinized the COX inhibitory capabilities of these extracts and saponin-rich fractions prepared therefrom. Molecular docking was employed to investigate the specific interactions between the identified saponins and COX enzymes. RESULTS: The analysis led to the annotation of 81 metabolites, among which saponins were predominant. The saponin-rich fraction of the fruit pericarp extract displayed the strongest COX-II inhibitory activity in the in vitro inhibition assay (IC50 value of 81.64 ± 3.98 µg/mL). The molecular docking study supported the selectivity of the identified saponins towards COX-II. The two major identified saponins, namely, proto-yamogenin 3-O-[deoxyhexosyl (1 → 2)] [hexosyl (1 → 4)] hexoside 26-O-hexoside and trigofenoside A, were predicted to have the highest affinity to the COX-II receptor site. CONCLUSION: In the present study, we focused on the identification of COX-II inhibitory saponins in fenugreek waste through an integrated approach. The findings offer valuable insights into potential anti-inflammatory and cancer chemoprotective applications of fenugreek waste.


Subject(s)
Cyclooxygenase 2 Inhibitors , Metabolomics , Molecular Docking Simulation , Saponins , Tandem Mass Spectrometry , Trigonella , Trigonella/chemistry , Saponins/chemistry , Saponins/pharmacology , Saponins/analysis , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Metabolomics/methods , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/analysis , Plant Extracts/chemistry , Plant Extracts/pharmacology , Cyclooxygenase 2/metabolism
2.
Materials (Basel) ; 16(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37570181

ABSTRACT

This paper studies the effect of the laser melting process (LMP) on the microstructure and hardness of a new modified AlCuMgMn alloy with zirconium (Zr) and Yttrium (Y) elements. Homogenized (480 °C/8 h) alloys were laser-surface-treated at room temperature and a heating platform with in situ heating conditions was used in order to control the formed microstructure by decreasing the solidification rate in the laser-melted zone (LMZ). Modifying the AlCuMgMn alloy with 0.4 wt% Zr and 0.6 wt% Y led to a decrease in grain size by 25% with a uniform grain size distribution in the as-cast state due to the formation of Al3(Y, Zr). The homogenization dissolved the nonequilibrium intermetallic phases into the (Al) matrix and spheroidized and fragmentized the equilibrium phase's particles, which led to the solidification of the crack-free LM zone with a nonuniform grain structure. The microstructure in the LMZ was improved by using the in situ heating approach, which decreased the temperature gradient between the BM and the melt pool. Two different microstructures were observed: ultrafine grains at the boundaries of the melted pool due to the extremely high concentration of optimally sized Al3(Y, Zr) and fine equiaxed grains at the center of the LMZ. The combination of the presence of ZrY and applying a heating platform during the LMP increased the hardness of the LMZ by 1.14 times more than the hardness of the LMZ of the cast AlCuMgMn alloy.

3.
Materials (Basel) ; 14(20)2021 Oct 17.
Article in English | MEDLINE | ID: mdl-34683746

ABSTRACT

AlZnMgCu, the high-strength aluminum alloy, is unsuitable for laser melting applications due to its high hot cracking sensitivity and large solidification temperature range. Adapting this alloy for laser melting processing is a high-demand research issue for extending its use. Thus, this paper investigates the effect of adding 4%Si, 4%Si-Sc+Zr, 4%Si-Ti+B, and homogenization annealing on the laser melting process (LMP) of AlZnMgCu alloy. Homogenization annealing at 500 °C for 6.5 h was selected to dissolve most of the low melting temperature phases into the grain matrix and perform stable alloys for the LMP. The pulsed laser melting process (PLM) was performed on the as-casted and the homogenized samples. The microstructures of the as-casted, the homogenized alloys, and after the LMP were evaluated. In addition, the hardness of the base metal (BM) and laser melted zone (LMZ) were measured. The results revealed that the microstructure was enhanced and refined in the as-cast state by adding the modifiers due to the increasing nucleation potency of solidification sites and the formation of primary Al3(Ti, Zr, Sc) phases. The average grain size was decreased by 15.6 times when adding 4%Si + 0.4%Zr + 0.29%Sc, while it decreased by 10.2 times when adding 4%Si + 1%Ti + 0.2%B. The LMZ of the as-casted samples exhibited a non-uniform distribution of the grains and the elements after the LMP. This was attributed to the evaporation of Zn, Mg during the high laser power process besides the non-uniform distribution of elements and phases in samples during casting. After the laser treating of the homogenized samples with 4%Si-Sc + Zr, uniform columnar grains were formed in the direction of the laser. The presence of Ti and B changed the crystallization nature, resulting in the LMZ with very fine and equiaxed grains due to forming many nucleation centers during solidification. The hardness values have positively increased due to Si addition and adding a combination of Ti + B and Sc + Zr. The maximum hardness was 153.9 ± 5 HV achieved in the LMZ of the homogenized samples of 4%Si + 1%Ti + 0.2%B.

4.
Materials (Basel) ; 12(20)2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31635182

ABSTRACT

The mechanical properties and microstructure of as-cast and homogenized AA7075 were investigated. This alloy was modified by adding transition elements 0.3%Sc + 0.5%Zr, 1%Ti + 0.2%B, and 1%Fe + 1%Ni for use in additive manufacturing applications. After adding Ti + B and Sc + Zr, the structure became uniform and finer with the formation of the Al3(Sc, Zr) and TiB2 phases. Coarse structures were obtained with the formation of an extremely unfavorable morphology, close to a needle-like structure when Fe + Ni was added. The mechanical properties of the modified alloys were increased compared to those of the standard alloy, where the best ultimate tensile strength (UTS) and yield strength (YS) were obtained in the AA7075-TiB alloy compared to the standard alloy in as-cast and homogenized conditions, and the highest hardness value was provided by Fe + Ni additives. The effect of the laser melting process on the microstructure and mechanical properties was investigated. Single laser melts were performed on these alloys using 330 V and a scanning speed of 8 mm/s. During the laser melting, the liquation of the alloying elements occurred due to non-equilibrium solidification. A change in the microstructures was observed within the melt zone and heat-affected zone (HAZ). The hardness of the laser-melted zone (LMZ) after adding the modification elements was increased in comparison with that of the standard alloy. Corrosion testing was performed using a solution of 100 mL distilled water, 3.1 g NaCl, and 1 mL HCl over 5, 10, and 30 min and 1 and 2 h. The corrosion resistance of the alloy modified with FeNi was low because of the non-uniform elemental distribution along the LMZ, but in the case of modification with ScZr and TiB, the corrosion resistance was better compared to that of the standard alloy.

SELECTION OF CITATIONS
SEARCH DETAIL
...