Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 90: 103089, 2019 09.
Article in English | MEDLINE | ID: mdl-31271947

ABSTRACT

New series of furan-thiazole hybrids (3a-f), thiazolo[2,3-c]-1,2,4-triazines (4a-f), their bioisosteres 1,3,4-thiadiazolo[2,3-c]-1,2,4-triazines (8a-d) and 1,2,4-triazino[4,3-b]-1,2,4-triazines (13a-e) were designed, synthesized and evaluated for their in vitro antitumor activities at the National Cancer Institute (NCI, USA). Among the synthesized compounds, 3d was found to exhibit promising broad spectrum antitumor activity (GI50 MG-MID = 14.22 µM) in a five-dose assay against the full panel NCI-cancer cell lines. 3d displayed higher antitumor activity against most tested cancer cell lines than 5-FU as reference. COMPARE analysis and molecular electrostatic potential computational study revealed that 3d probably exerts its antitumor properties through DNA binding similar to Clomesone. Further DNA binding studies using fluorescent terbium (Tb+3) probe revealed increased fluroresence of DNA-3d-Tb+3 mixture due to damage of the double-stranded DNA. Also, UV-vis absorption study was conducted which showed hyperchromic shift in DNA absorption confirming 3d-induced DNA damage. The assessed potency of 3d-induced DNA damage of calf thymus DNA showed a concentration as low as 2.04 ng/mL for a detectable DNA damage. Moreover, in silico calculation of physicochemical properties and druglikeness were in compliance to Lipinski's rule.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , DNA/metabolism , Drug Design , Neoplasms/drug therapy , Thiazoles/chemistry , Triazines/chemistry , Apoptosis , Cell Proliferation , DNA/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Neoplasms/pathology , Structure-Activity Relationship , Tumor Cells, Cultured
2.
Bioorg Chem ; 90: 102844, 2019 09.
Article in English | MEDLINE | ID: mdl-31229797

ABSTRACT

New pyrazolo[3,4-d]pyrimidinone and pyrazolo[4,3-e][1,2,4]triazolo[4,3-a]pyrimidinone derivatives were synthesized. They have been evaluated for their anti-inflammatory activity using in vitro (COX-1/COX-2) inhibitory assay. Moreover, compounds with promising in vitro activity and COX-1/COX-2 selectivity indices were subjected for in vivo anti-inflammatory testing using formalin induced paw edema and cotton-pellet induced granuloma assays for acute and chronic models, respectively. Compounds (2c, 3i, 6a, 8 and 12) showed promising COX-2 inhibitory activity and high selectivity compared to celecoxib. Most of the compounds exhibited potential anti-inflammatory activity for both in vivo acute and chronic models. Almost all compounds displayed safe gastrointestinal profile and low ulcerogenic potential guided by histopathological examination. Furthermore, molecular docking experiments rationalized the observed in vitro anti-inflammatory activity of selected candidates. In silico predictions of the pharmacokinetic and drug-likeness properties recommended accepted profiles of the majority of compounds. In conclusion, this work provides an extension of the chemical space of pyrazolopyrimidinone and pyrazolotriazolopyrimidinone chemotypes for the anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Pyrazoles/therapeutic use , Pyrimidinones/therapeutic use , Triazoles/therapeutic use , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacokinetics , Binding Sites , Celecoxib/pharmacology , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/metabolism , Cyclooxygenase 2 Inhibitors/pharmacokinetics , Cyclooxygenase 2 Inhibitors/therapeutic use , Diclofenac/pharmacology , Edema/drug therapy , Female , Granuloma/drug therapy , Molecular Docking Simulation , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Pyrazoles/pharmacokinetics , Pyrimidinones/chemical synthesis , Pyrimidinones/metabolism , Pyrimidinones/pharmacokinetics , Rats, Wistar , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/metabolism , Triazoles/pharmacokinetics
3.
Bioorg Chem ; 80: 164-173, 2018 10.
Article in English | MEDLINE | ID: mdl-29929077

ABSTRACT

Two new series of pyrazolo[3,4-d]pyrimidine bearing thiazolidinone moiety were designed and synthesized. The newly synthesized compounds were evaluated for their in vitro (COX-1 and COX-2) inhibitory assay. Compounds that showed promising COX-2 selectivity were further subjected to in vivo anti-inflammatory screening applying formalin induced paw edema (acute model) and cotton-pellet induced granuloma (chronic model) assays using celecoxib and diclofenac sodium as reference drugs. The histopathological and ulcerogenic potential were also determined. In vivo anti-inflammatory data showed that compounds 2, 6, 7d displayed anti-inflammatory activity higher than both references in the formalin induced paw edema model. On the other hand, compounds 2, 3d, 3e, 7b and 7d displayed anti-inflammatory activity greater than or nearly equivalent to diclofenac sodium in the cotton pellet-induced granuloma assay. Moreover, most of the tested compounds revealed good gastrointestinal safety profile. Collectively, compounds 2 and 7d were considered as promising candidates in managing both acute and chronic inflammation with safe gastrointestinal margin.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Drug Design , Edema/drug therapy , Pyrazoles/chemistry , Pyrimidines/chemistry , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/therapeutic use , Celecoxib/therapeutic use , Cyclooxygenase 1/chemistry , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/therapeutic use , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/metabolism , Cyclooxygenase Inhibitors/therapeutic use , Diclofenac/therapeutic use , Edema/chemically induced , Edema/veterinary , Female , Granuloma/chemically induced , Granuloma/drug therapy , Granuloma/veterinary , Pyrazoles/metabolism , Pyrazoles/therapeutic use , Pyrimidines/metabolism , Pyrimidines/therapeutic use , Rats , Rats, Wistar , Structure-Activity Relationship , Thiazolidines/chemistry
4.
Bioorg Chem ; 78: 358-371, 2018 08.
Article in English | MEDLINE | ID: mdl-29627656

ABSTRACT

New pyrazolo[3,4-d]pyrimidines substituted with various functionalities or attached to a substituted pyrazole ring through different linkages were synthesized. The synthesized compounds were evaluated for their anti-inflammatory activity using in vitro COX-1/COX-2 inhibition assay and in vivo formalin induced paw edema and cotton pellet-induced granuloma assays. Results revealed that compounds 17b and 18 possessed COX-1/COX-2 selectivity indices higher than diclofenac sodium and celecoxib. However, compounds 16a,b exhibited selectivity indices higher than diclofenac sodium and nearly equivalent to celecoxib, whereas, 9b displayed selectivity index comparable to diclofenac sodium. In vivo anti-inflammatory data showed that compounds 9b, 16a, 18 displayed anti-inflammatory activity higher than both references in the formalin induced paw edema model. On the other hand, the pyrazolyl derivatives 9b, 16b and 17b displayed anti-inflammatory activity about 2-2.5-fold that of diclofenac sodium and nearly 8-10.5-fold that of celecoxib in the cotton pellet-induced granuloma assay. The ulcerogenic effect of the active compounds was also investigated and results revealed that compounds 16a, 17a,b and 18 showed good gastrointestinal safety profile. Based on this, compounds 16a and 18 were considered as safe and effective leads in managing acute inflammation, while, 17b was prominent in controlling chronic inflammation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Ulcer Agents/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Edema/drug therapy , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Stomach Ulcer/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Ulcer Agents/chemical synthesis , Anti-Ulcer Agents/chemistry , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Design , Edema/chemically induced , Edema/metabolism , Female , Formaldehyde , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Rats , Rats, Wistar , Stomach Ulcer/chemically induced , Stomach Ulcer/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...