Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 107(5-1): 054302, 2023 May.
Article in English | MEDLINE | ID: mdl-37329013

ABSTRACT

Although the cooperative dynamics emerging from a network of interacting players has been exhaustively investigated, it is not yet fully understood when and how network reciprocity drives cooperation transitions. In this work, we investigate the critical behavior of evolutionary social dilemmas on structured populations by using the framework of master equations and Monte Carlo simulations. The developed theory describes the existence of absorbing, quasiabsorbing, and mixed strategy states and the transition nature, continuous or discontinuous, between the states as the parameters of the system change. In particular, when the decision-making process is deterministic, in the limit of zero effective temperature of the Fermi function, we find that the copying probabilities are discontinuous functions of the system's parameters and of the network degrees sequence. This may induce abrupt changes in the final state for any system size, in excellent agreement with the Monte Carlo simulation results. Our analysis also reveals the existence of continuous and discontinuous phase transitions for large systems as the temperature increases, which is explained in the mean-field approximation. Interestingly, for some game parameters, we find optimal "social temperatures" maximizing or minimizing the cooperation frequency or density.


Subject(s)
Cooperative Behavior , Game Theory , Computer Simulation , Biological Evolution , Monte Carlo Method
2.
Phys Rev E ; 106(6-1): 064307, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36671121

ABSTRACT

How large ecosystems can create and maintain the remarkable biodiversity we see in nature is probably one of the biggest open questions in science, attracting attention from different fields, from theoretical ecology to mathematics and physics. In this context, modeling the stable coexistence of species competing for limited resources is a particularly challenging task. From a mathematical point of view, coexistence in competitive dynamics can be achieved when dominance among species forms intransitive loops. However, these relationships usually lead to species' relative abundances neutrally cycling without converging to a stable equilibrium. Although in recent years several mechanisms have been proposed, models able to explain species coexistence in competitive communities are still limited. Here we identify locality in the interactions as one of the simplest mechanisms leading to stable species coexistence. We consider a simplified ecosystem where individuals of each species lay on a spatial network and interactions are possible only between nodes within a certain distance. Varying such distance allows to interpolate between local and global competition. Our results demonstrate, within the scope of our model, that species coexist reaching a stable equilibrium when two conditions are met: individuals are embedded in space and can only interact with other individuals within a short distance. On the contrary, when one of these ingredients is missing, large oscillations and neutral cycles emerge.


Subject(s)
Ecosystem , Models, Biological , Humans , Ecology , Biota , Biodiversity , Population Dynamics
3.
Phys Rev E ; 103(1-1): 012311, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33601527

ABSTRACT

The noisy voter model is a stylized representation of opinion dynamics. Individuals copy opinions from other individuals, and are subject to spontaneous state changes. In the case of two opinion states this model is known to have a noise-driven transition between a unimodal phase, in which both opinions are present, and a bimodal phase, in which one of the opinions dominates. The presence of zealots can remove the unimodal and bimodal phases in the model with two opinion states. Here we study the effects of zealots in noisy voter models with M>2 opinion states on complete interaction graphs. We find that the phase behavior diversifies, with up to six possible qualitatively different types of stationary states. The presence of zealots removes some of these phases, but not all. We analyze situations in which zealots affect the entire population, or only a fraction of agents, and show that this situation corresponds to a single-community model with a fractional number of zealots, further enriching the phase diagram. Our study is conducted analytically based on effective birth-death dynamics for the number of individuals holding a given opinion. Results are confirmed in numerical simulations.

4.
Phys Rev E ; 101(1-1): 012904, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32069611

ABSTRACT

The Navier-Stokes transport coefficients of multicomponent granular suspensions at moderate densities are obtained in the context of the (inelastic) Enskog kinetic theory. The suspension is modeled as an ensemble of solid particles where the influence of the interstitial gas on grains is via a viscous drag force plus a stochastic Langevin-like term defined in terms of a background temperature. In the absence of spatial gradients, it is shown first that the system reaches a homogeneous steady state where the energy lost by inelastic collisions and viscous friction is compensated for by the energy injected by the stochastic force. Once the homogeneous steady state is characterized, a normal solution to the set of Enskog equations is obtained by means of the Chapman-Enskog expansion around the local version of the homogeneous state. To first order in spatial gradients, the Chapman-Enskog solution allows us to identify the Navier-Stokes transport coefficients associated with the mass, momentum, and heat fluxes. In addition, the first-order contributions to the partial temperatures and the cooling rate are also calculated. Explicit forms for the diffusion coefficients, the shear and bulk viscosities, and the first-order contributions to the partial temperatures and the cooling rate are obtained in steady-state conditions by retaining the leading terms in a Sonine polynomial expansion. The results show that the dependence of the transport coefficients on inelasticity is clearly different from that found in its granular counterpart (no gas phase). The present work extends previous theoretical results for dilute multicomponent granular suspensions [Khalil and Garzó, Phys. Rev. E 88, 052201 (2013)10.1103/PhysRevE.88.052201] to higher densities.

6.
Phys Rev E ; 97(2-1): 022902, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29548226

ABSTRACT

The Navier-Stokes order hydrodynamic equations for a low-density driven granular mixture obtained previously [Khalil and Garzó, Phys. Rev. E 88, 052201 (2013)PLEEE81539-375510.1103/PhysRevE.88.052201] from the Chapman-Enskog solution to the Boltzmann equation are considered further. The four transport coefficients associated with the heat flux are obtained in terms of the mass ratio, the size ratio, composition, coefficients of restitution, and the driven parameters of the model. Their quantitative variation on the control parameters of the system is demonstrated by considering the leading terms in a Sonine polynomial expansion to solve the exact integral equations. As an application of these results, the stability of the homogeneous steady state is studied. In contrast to the results obtained in undriven granular mixtures, the stability analysis of the linearized Navier-Stokes hydrodynamic equations shows that the transversal and longitudinal modes are (linearly) stable with respect to long enough wavelength excitations. This conclusion agrees with a previous analysis made for single granular gases.

7.
Phys Rev E ; 97(1-1): 012310, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29448335

ABSTRACT

The influence of zealots on the noisy voter model is studied theoretically and numerically at the mean-field level. The noisy voter model is a modification of the voter model that includes a second mechanism for transitions between states: Apart from the original herding processes, voters may change their states because of an intrinsic noisy-in-origin source. By increasing the importance of the noise with respect to the herding, the system exhibits a finite-size phase transition from a quasiconsensus state, where most of the voters share the same opinion, to one with coexistence. Upon introducing some zealots, or voters with fixed opinion, the latter scenario may change significantly. We unveil new situations by carrying out a systematic numerical and analytical study of a fully connected network for voters, but allowing different voters to be directly influenced by different zealots. We show that this general system is equivalent to a system of voters without zealots, but with heterogeneous values of their parameters characterizing herding and noisy dynamics. We find excellent agreement between our analytical and numerical results. Noise and herding or zealotry acting together in the voter model yields a nontrivial mixture of the scenarios with the two mechanisms acting alone: It represents a situation where the global-local (noise-herding) competition is coupled to a symmetry breaking (zealots). In general, the zealotry enhances the effective noise of the system, which may destroy the original quasiconsensus state, and can introduce a bias towards the opinion of the majority of zealots, hence breaking the symmetry of the system and giving rise to new phases. In the most general case we find two different transitions: a discontinuous transition from an asymmetric bimodal phase to an extreme asymmetric phase and a second continuous transition from the extreme asymmetric phase to an asymmetric unimodal phase.

8.
Eur Phys J E Soft Matter ; 38(3): 16, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25772813

ABSTRACT

A mixture of dissipative hard grains generically exhibits a breakdown of kinetic energy equipartition. The undriven and thus freely cooling binary problem, in the tracer limit where the density of one species becomes minute, may exhibit an extreme form of this breakdown, with the minority species carrying a finite fraction of the total kinetic energy of the system. We investigate the fingerprint of this non-equilibrium phase transition, akin to an ordering process, on transport properties. The analysis, performed by solving the Boltzmann kinetic equation from a combination of analytical and Monte Carlo techniques, hints at the possible failure of hydrodynamics in the ordered region. As a relevant byproduct of the study, the behaviour of the second- and fourth-degree velocity moments is also worked out.

9.
Article in English | MEDLINE | ID: mdl-25353781

ABSTRACT

The hydrodynamic Burnett equations and the associated transport coefficients are exactly evaluated for generalized inelastic Maxwell models. In those models, the one-particle distribution function obeys the inelastic Boltzmann equation, with a velocity-independent collision rate proportional to the γ power of the temperature. The pressure tensor and the heat flux are obtained to second order in the spatial gradients of the hydrodynamic fields with explicit expressions for all the Burnett transport coefficients as functions of γ, the coefficient of normal restitution, and the dimensionality of the system. Some transport coefficients that are related in a simple way in the elastic limit become decoupled in the inelastic case. As a byproduct, existing results in the literature for three-dimensional elastic systems are recovered, and a generalization to any dimension of the system is given. The structure of the present results is used to estimate the Burnett coefficients for inelastic hard spheres.

10.
Article in English | MEDLINE | ID: mdl-25353786

ABSTRACT

Segregation induced by a thermal gradient of an impurity in a driven low-density granular gas is studied. The system is enclosed between two parallel walls from which we input thermal energy to the gas. We study here steady states occurring when the inelastic cooling is exactly balanced by some external energy input (stochastic force or viscous heating), resulting in a uniform heat flux. A segregation criterion based on Navier-Stokes granular hydrodynamics is written in terms of the tracer diffusion transport coefficients, whose dependence on the parameters of the system (masses, sizes, and coefficients of restitution) is explicitly determined from a solution of the inelastic Boltzmann equation. The theoretical predictions are validated by means of Monte Carlo and molecular dynamics simulations, showing that Navier-Stokes hydrodynamics produces accurate segregation criteria even under strong shearing and/or inelasticity.


Subject(s)
Colloids/chemistry , Gases/chemistry , Heating , Hydrodynamics , Models, Chemical , Models, Statistical , Computer Simulation , Molecular Dynamics Simulation , Rheology/methods , Shear Strength , Stress, Mechanical
11.
Soft Matter ; 10(27): 4800-5, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24828914

ABSTRACT

The structural arrest of a polymeric suspension might be driven by an increase of the cross-linker concentration, which drives the gel transition, as well as by an increase of the polymer density, which induces a glass transition. These dynamical continuous (gel) and discontinuous (glass) transitions might interfere, since the glass transition might occur within the gel phase, and the gel transition might be induced in a polymer suspension with glassy features. Here we study the interplay of these transitions by investigating via event-driven molecular dynamics simulation the relaxation dynamics of a polymeric suspension as a function of the cross-linker concentration and the monomer volume fraction. We show that the slow dynamics within the gel phase is characterized by a long sub-diffusive regime, which is due both to the crowding as well as to the presence of a percolating cluster. In this regime, the transition of structural arrest is found to occur either along the gel or along the glass line, depending on the length scale at which the dynamics is probed. Where the two lines meet there is no apparent sign of higher order dynamical singularity. Logarithmic behavior typical of A3 singularity appears inside the gel phase along the glass transition line. These findings seem to be related to the results of the mode coupling theory for the F13 schematic model.

12.
J Chem Phys ; 140(16): 164901, 2014 Apr 28.
Article in English | MEDLINE | ID: mdl-24784304

ABSTRACT

The homogeneous state of a binary mixture of smooth inelastic hard disks or spheres is analyzed. The mixture is driven by a thermostat composed by two terms: a stochastic force and a drag force proportional to the particle velocity. The combined action of both forces attempts to model the interaction of the mixture with a bath or surrounding fluid. The problem is studied by means of two independent and complementary routes. First, the Enskog kinetic equation with a Fokker-Planck term describing interactions of particles with thermostat is derived. Then, a scaling solution to the Enskog kinetic equation is proposed where the dependence of the scaled distributions φi of each species on the granular temperature occurs not only through the dimensionless velocity c = v/v0 (v0 being the thermal velocity) but also through the dimensionless driving force parameters. Approximate forms for φi are constructed by considering the leading order in a Sonine polynomial expansion. The ratio of kinetic temperatures T1/T2 and the fourth-degree velocity moments λ1 and λ2 (which measure non-Gaussian properties of φ1 and φ2, respectively) are explicitly determined as a function of the mass ratio, size ratio, composition, density, and coefficients of restitution. Second, to assess the reliability of the theoretical results, molecular dynamics simulations of a binary granular mixture of spheres are performed for two values of the coefficient of restitution (α = 0.9 and 0.8) and three different solid volume fractions (ϕ = 0.00785, 0.1, and 0.2). Comparison between kinetic theory and computer simulations for the temperature ratio shows excellent agreement, even for moderate densities and strong dissipation. In the case of the cumulants λ1 and λ2, good agreement is found for the lower densities although significant discrepancies between theory and simulation are observed with increasing density.

13.
Article in English | MEDLINE | ID: mdl-24329253

ABSTRACT

The transport coefficients of a granular binary mixture driven by a stochastic bath with friction are determined from the inelastic Boltzmann kinetic equation. A normal solution is obtained via the Chapman-Enskog method for states near homogeneous steady states. The mass, momentum, and heat fluxes are determined to first order in the spatial gradients of the hydrodynamic fields, and the associated transport coefficients are identified. They are given in terms of the solutions of a set of coupled linear integral equations. As in the monocomponent case, since the collisional cooling cannot be compensated for locally by the heat produced by the external driving, the reference distributions (zeroth-order approximations) f(i)((0)) (i=1,2) for each species depend on time through their dependence on the pressure and the temperature. Explicit forms for the diffusion transport coefficients and the shear viscosity coefficient are obtained by assuming the steady-state conditions and by considering the leading terms in a Sonine polynomial expansion. A comparison with previous results obtained for granular Brownian motion and by using a (local) stochastic thermostat is also carried out. The present work extends previous theoretical results derived for monocomponent dense gases [Garzó, Chamorro, and Vega Reyes, Phys. Rev. E 87, 032201 (2013)] to granular mixtures at low density.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 1): 021307, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22463202

ABSTRACT

A low density binary mixture of granular gases is considered within the Boltzmann kinetic theory. One component, the intruders, is taken to be dilute with respect to the other, and thermal segregation of the two species is described for a special solution to the Boltzmann equation. This solution has a macroscopic hydrodynamic representation with a constant temperature gradient and is referred to as the Fourier state. The thermal diffusion factor characterizing conditions for segregation is calculated without the usual restriction to Navier-Stokes hydrodynamics. Integral equations for the coefficients in this hydrodynamic description are calculated approximately within a Sonine polynomial expansion. Molecular dynamics simulations are reported, confirming the existence of this idealized Fourier state. Good agreement is found for the predicted and simulated thermal diffusion coefficient, while only qualitative agreement is found for the temperature ratio.


Subject(s)
Colloids/chemistry , Colloids/isolation & purification , Gases/chemistry , Gases/isolation & purification , Models, Chemical , Models, Molecular , Rheology/methods , Computer Simulation , Diffusion , Fourier Analysis , Hot Temperature
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(5 Pt 1): 051301, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21230467

ABSTRACT

Two granular gases separated by an adiabatic piston and initially in the same macroscopic state are considered. It is found that a phase transition with an spontaneous symmetry breaking occurs. When the mass of the piston is increased beyond a critical value, the piston moves to a stationary position different from the middle of the system. The transition is accurately described by a simple kinetic model that takes into account the velocity fluctuations of the piston. Interestingly, the final state is not characterized by the equality of the temperatures of the subsystems but by the cooling rates being the same. Some relevant consequences of this feature are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...