Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Endocrinology ; 162(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-33674833

ABSTRACT

Testosterone (T) reduces male fat mass, but the underlying mechanisms remain elusive, limiting its clinical relevance in hypogonadism-associated obesity. Here, we subjected chemically castrated high-fat diet-induced adult obese male mice to supplementation with T or the nonaromatizable androgen dihydrotestosterone (DHT) for 20 weeks. Both hormones increased lean mass, thereby indirectly increasing oxygen consumption and energy expenditure. In addition, T but not DHT decreased fat mass and increased ambulatory activity, indicating a role for aromatization into estrogens. Investigation of the pattern of aromatase expression in various murine tissues revealed the absence of Cyp19a1 expression in adipose tissue while high levels were observed in brain and gonads. In obese hypogonadal male mice with extrahypothalamic neuronal estrogen receptor alpha deletion (N-ERαKO), T still increased lean mass but was unable to decrease fat mass. The stimulatory effect of T on ambulatory activity was also abolished in N-ERαKO males. In conclusion, our work demonstrates that the fat-burning action of T is dependent on aromatization into estrogens and is at least partially mediated by the stimulation of physical activity via extrahypothalamic ERα signaling. In contrast, the increase in lean mass upon T supplementation is mediated through the androgen receptor and indirectly leads to an increase in energy expenditure, which might also contribute to the fat-burning effects of T.


Subject(s)
Adipose Tissue/drug effects , Estrogen Receptor alpha/physiology , Motor Activity/physiology , Testosterone/pharmacology , Adipose Tissue/metabolism , Animals , Dihydrotestosterone/pharmacology , Energy Metabolism/drug effects , Energy Metabolism/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Hypogonadism/genetics , Hypogonadism/metabolism , Hypothalamus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Motor Activity/drug effects , Obesity/genetics , Obesity/metabolism , Physical Conditioning, Animal/physiology , Signal Transduction/drug effects , Signal Transduction/genetics , Testosterone Congeners/pharmacology
2.
Am J Physiol Endocrinol Metab ; 320(3): E415-E424, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33308013

ABSTRACT

Sex steroids are critical for skeletal development and maturation during puberty as well as for skeletal maintenance during adult life. However, the exact time during puberty when sex steroids have the highest impact as well as the ability of bone to recover from transient sex steroid deficiency is unclear. Surgical castration is a common technique to study sex steroid effects in rodents, but it is irreversible, invasive, and associated with metabolic and behavioral alterations. Here, we used a low dose (LD) or a high dose (HD) of gonadotropin-releasing hormone antagonist to either temporarily or persistently suppress sex steroid action in male mice, respectively. The LD group, a model for delayed puberty, did not show changes in linear growth or body composition, but displayed reduced trabecular bone volume during puberty, which fully caught up at adult age. In contrast, the HD group, representing complete pubertal suppression, showed a phenotype reminiscent of that observed in surgically castrated rodents. Indeed, HD animals exhibited severely impaired cortical and trabecular bone acquisition, decreased body weight and lean mass, and increased fat mass. In conclusion, we developed a rodent model of chemical castration that can be used as an alternative to surgical castration. Moreover, the transient nature of the intervention enables to study the effects of delayed puberty and reversibility of sex steroid deficiency.NEW & NOTEWORTHY We developed a rodent model of chemical castration, which can be used as an alternative to surgical castration. Moreover, the transient nature of the intervention enables to study the effects of delayed puberty and reversibility of sex steroid deficiency.


Subject(s)
Bone Development , Bone and Bones/physiology , Gonadal Steroid Hormones/deficiency , Hypogonadism/pathology , Animals , Body Composition/drug effects , Bone Development/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism , Gonadal Steroid Hormones/pharmacology , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Gonadotropin-Releasing Hormone/pharmacology , Hormone Antagonists/pharmacology , Hypogonadism/complications , Hypogonadism/metabolism , Male , Mice , Mice, Inbred C57BL , Orchiectomy , Sexual Maturation/physiology , Time Factors
3.
Int J Obes (Lond) ; 44(10): 2165-2176, 2020 10.
Article in English | MEDLINE | ID: mdl-32546862

ABSTRACT

BACKGROUND: Bone loss and increased fracture risk following bariatric surgery has been reported. We investigated whether the two most commonly performed surgeries, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB), lead to bone loss. In addition, we examined whether fortification of the diet with calcium citrate prevents bone loss. METHODS: We used mouse models for SG and RYGB and compared bone loss with a group of sham mice with similar weight loss. All groups were switched at the time of surgery to a low-fat diet (LFD). We also examined whether fortification of the diet with calcium citrate and vitamin D was able to prevent bone loss. RESULTS: At 2 weeks we observed no major bone effects. However, at 8 weeks, both trabecular and cortical bone were lost to the same extent after SG and RYGB, despite increased calcium absorption and adequate serum levels of calcium, vitamin D, and parathyroid hormone (PTH). Diet fortification with calcium citrate and vitamin D was able to partially prevent bone loss. CONCLUSIONS: Both SG and RYGB lead to excess bone loss, despite intestinal adaptations to increase calcium absorption. Fortifying the diet with calcium citrate and vitamin D partly prevented the observed bone loss. This finding emphasizes the importance of nutritional support strategies after bariatric surgery, but also affirms that the exact mechanisms leading to bone loss after bariatric surgery remain elusive and thus warrant further research.


Subject(s)
Bone Resorption/etiology , Gastrectomy/adverse effects , Gastric Bypass/adverse effects , Animals , Bone Resorption/prevention & control , Calcium/administration & dosage , Calcium/blood , Diet , Dietary Supplements , Eating , Male , Mice , Mice, Inbred C57BL , Parathyroid Hormone/blood , Vitamin D/administration & dosage , Vitamin D/blood , Weight Loss
4.
Mol Cell Endocrinol ; 514: 110891, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32533994

ABSTRACT

Renal calcium and phosphate handling is an important contributor to mineral homeostasis and bone health and the androgen receptor (AR) is highly expressed in the kidney. We investigated the short term effects of androgen deprivation on renal calcium and phosphate reabsorption, independent of their effects on bone. Two weeks following orchidectomy (ORX) of adult mice, bone loss occurred along with hypercalciuria, which was similarly prevented by testosterone and dihydrotestosterone supplementation. Treatment with bisphosphonates prior to ORX also inhibited hypercalciuria, indicating that the calcium flux originated from the bone. Renal calcium and phosphate transporter expression was increased post-ORX, independent of bisphosphonates. Furthermore, androgen deprivation appeared to stimulate local synthesis of 1,25(OH)2D3. When bisphosphonate-treated mice were fed a low calcium diet, bone resorption was no longer blocked and secondary hyperparathyroidism developed, which was more pronounced in ORX mice than sham-operated mice. In conclusion, this study shows that androgen deprivation increased renal calcium and phosphate transporter expression, independent of bone, and underlines the importance of adequate intestinal calcium supply in circumstances of androgen deprivation and bisphosphonate treatment.


Subject(s)
Androgens/pharmacology , Calcium, Dietary/pharmacology , Calcium/metabolism , Diphosphonates/pharmacology , Kidney/drug effects , Phosphates/metabolism , Animals , Bone Density/drug effects , Bone Resorption/metabolism , Bone Resorption/pathology , Bone and Bones/drug effects , Bone and Bones/metabolism , Diet , Kidney/metabolism , Male , Mice , Mice, Inbred C57BL , Orchiectomy , Urinalysis
5.
Eur J Endocrinol ; 183(2): 181-189, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32454455

ABSTRACT

OBJECTIVE: Long-term androgen deprivation therapy (ADT) negatively influences bone. The short-term effects on bone and mineral homeostasis are less known. Therefore, we aimed to investigate the early effects of ADT on calcium/phosphate homeostasis and bone turnover. DESIGN: Prospective cohort study. METHODS: Eugonadal adult, male sex offenders, who were referred for ADT to the endocrine outpatient clinic, received cyproterone acetate. Changes in blood markers of calcium/phosphate homeostasis and bone turnover between baseline and first follow-up visit were studied. RESULTS: Of 26 screened patients, 17 were included. The median age was 44 (range 20-75) years. The median time interval between baseline and first follow-up was 13 (6-27) weeks. Compared to baseline, an 81% decrease was observed for median total testosterone (to 3.4 nmol/L (0.4-12.2); P < 0.0001) and free testosterone (to 0.06 nmol/L (0.01-0.18); P < 0.0001). Median total estradiol decreased by 71% (to 17.6 pmol/L (4.7-35.6); P < 0.0001). Increased serum calcium (P < 0.0001) and phosphate (P = 0.0016) was observed, paralleled by decreased PTH (P = 0.0156) and 1,25-dihydroxyvitamin D3 (P = 0.0134). The stable calcium isotope ratio (δ44/42Ca) decreased (P = 0.0458), indicating net calcium loss from bone. Bone-specific alkaline phosphatase and osteocalcin decreased (P < 0.0001 and P = 0.0056, respectively), periostin tended to decrease (P = 0.0500), whereas sclerostin increased (P < 0.0001), indicating suppressed bone formation. Serum bone resorption markers (TRAP, CTX) were unaltered. CONCLUSIONS: In adult men, calcium release from the skeleton occurs early following sex steroid deprivation, reflecting early bone resorption. The increase of sclerostin and reduction of bone formation markers, without changes in resorption markers, suggests a dominant negative effect on bone formation in the acute phase.


Subject(s)
Androgen Antagonists/pharmacology , Bone and Bones/drug effects , Bone and Bones/physiology , Calcification, Physiologic/drug effects , Cyproterone Acetate/pharmacology , Adult , Aged , Belgium , Bone Remodeling/drug effects , Calcium/blood , Cohort Studies , Homeostasis/drug effects , Humans , Male , Middle Aged , Phosphates/blood , Prospective Studies , Sex Offenses , Testosterone/blood
6.
FASEB J ; 34(5): 7118-7126, 2020 05.
Article in English | MEDLINE | ID: mdl-32239553

ABSTRACT

Sexually dimorphic bone structure emerges largely during puberty. Sex steroids are critical for peak bone mass acquisition in both genders. In particular, the biphasic effects of estrogens mediate the skeletal sexual dimorphism. However, so far the stimulatory vs inhibitory actions of estrogens on bone mass are not fully explained by direct effects on bone cells. Recently, it has become evident that there is possible neuroendocrine action of estrogen receptor alpha (ERα) on the skeleton. Based on these considerations, we hypothesized that neuronal ERα-signaling may contribute to the skeletal growth during puberty. Here, we generated mice with tamoxifen-inducible Thy1-Cre mediated ERα inactivation during late puberty specifically in extrahypothalamic neurons (N-ERαKO). Inactivation of neuronal ERα did not alter the body weight in males, whereas N-ERαKO females exhibited a higher body weight and increased body and bone length compared to their control littermates at 16 weeks of age. Ex vivo microCT analysis showed increased radial bone expansion of the midshaft femur in female N-ERαKO along with higher serum levels of insulin-like growth factor (IGF)-1 as well as IGF-binding protein (IGFBP)-3. Furthermore, the 3-point bending test revealed increased bone strength in female N-ERαKO. In contrast, inactivation of neuronal ERα had no major effect on bone growth in males. In conclusion, we demonstrate that central ERα-signaling limits longitudinal bone growth and radial bone expansion specifically in females potentially by interacting with the GH/IGF-1 axis.


Subject(s)
Bone Development/physiology , Estrogen Receptor alpha/metabolism , Neurons/metabolism , Sexual Maturation/physiology , Animals , Biomechanical Phenomena , Bone Density/genetics , Bone Density/physiology , Bone Development/genetics , Bone and Bones/anatomy & histology , Bone and Bones/diagnostic imaging , Bone and Bones/physiology , Estrogen Receptor alpha/deficiency , Estrogen Receptor alpha/genetics , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sex Characteristics , Sexual Maturation/genetics , Signal Transduction , X-Ray Microtomography
7.
J Bone Miner Res ; 34(3): 508-519, 2019 03.
Article in English | MEDLINE | ID: mdl-30496619

ABSTRACT

Androgens via the androgen receptor (AR) are required for optimal male bone health. The target cell(s) for the effects of androgens on cortical bone remain(s) incompletely understood. In females, estrogen receptor alpha in neurons is a negative regulator of cortical and trabecular bone. Whether neuronal AR regulates bone mass in males remains unexplored. Here, we inactivated AR in neurons using a tamoxifen-inducible CreERT2 under the control of the neuronal promoter Thy1. Tamoxifen induced a 70% to 80% reduction of AR mRNA levels in Thy1-CreERT2-positive brain regions cerebral cortex and brainstem as well as in the peripheral nervous tissue of male neuronal AR knockout (N-ARKO) mice. Hypothalamic AR mRNA levels were only marginally reduced and the hypothalamic-pituitary-gonadal axis remained unaffected, as determined by normal levels of serum testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). In contrast to orchidectomy, deletion of neuronal AR did not alter body weight, body composition, hindlimb muscle mass, grip strength, or wheel running. MicroCT analysis of the femur revealed no changes in bone accrual during growth in N-ARKO mice. However, 36- and 46-week-old N-ARKO mice displayed an accelerated age-related cortical involution, namely a more pronounced loss of cortical thickness and strength, which occurred in the setting of androgen sufficiency. Neuronal AR inactivation decreased the cancellous bone volume fraction in L5 vertebra but not in the appendicular skeleton of aging mice. MicroCT findings were corroborated in the tibia and after normalization of hormonal levels. Serum markers of bone turnover and histomorphometry parameters were comparable between genotypes, except for a 30% increase in osteoclast surface in the trabecular compartment of 36-week-old N-ARKO mice. Cortical bone loss in N-ARKO mice was associated with an upregulation of Ucp1 expression in brown adipose tissue, a widely used readout for sympathetic tone. We conclude that androgens preserve cortical integrity in aging male mice via AR in neurons. © 2018 American Society for Bone and Mineral Research.


Subject(s)
Aging/pathology , Cortical Bone/pathology , Neurons/metabolism , Receptors, Androgen/metabolism , Animals , Body Composition , Body Weight , Bone Resorption/pathology , Cancellous Bone/pathology , Femur/pathology , Gene Deletion , Gonads/metabolism , Hypothalamo-Hypophyseal System/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Muscles/metabolism , Osteogenesis , Uncoupling Protein 1/metabolism
8.
J Endocrinol ; 238(1): R31-R52, 2018 07.
Article in English | MEDLINE | ID: mdl-29743340

ABSTRACT

Physical inactivity is a pandemic that contributes to several chronic diseases and poses a significant burden on health care systems worldwide. The search for effective strategies to combat sedentary behavior has led to an intensification of the research efforts to unravel the biological substrate controlling activity. A wide body of preclinical evidence makes a strong case for sex steroids regulating physical activity in both genders, albeit the mechanisms implicated remain unclear. The beneficial effects of androgens on muscle as well as on other peripheral functions might play a role in favoring adaptation to exercise. Alternatively or in addition, sex steroids could act on specific brain circuitries to boost physical activity. This review critically discusses the evidence supporting a role for androgens and estrogens stimulating male physical activity, with special emphasis on the possible role of peripheral and/or central mechanisms. Finally, the potential translation of these findings to humans is briefly discussed.


Subject(s)
Androgens/pharmacology , Brain/drug effects , Estrogens/pharmacology , Exercise/physiology , Muscles/drug effects , Sex Characteristics , Androgens/metabolism , Animals , Estrogens/metabolism , Female , Gonadal Steroid Hormones/metabolism , Gonadal Steroid Hormones/pharmacology , Humans , Male , Nerve Net/drug effects , Nerve Net/physiology
9.
Sci Rep ; 8(1): 957, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343749

ABSTRACT

Low testosterone (T) in men, especially its free fraction, has been associated with loss of energy. In accordance, orchidectomy (ORX) in rodents results in decreased physical activity. Still, the mechanisms through which T stimulates activity remain mostly obscure. Here, we studied voluntary wheel running behavior in three different mouse models of androgen deficiency: ORX, androgen receptor (AR) knock-out (ARKO) and sex hormone binding globulin (SHBG)-transgenic mice, a novel mouse model of "low free T". Our results clearly show a fast and dramatic action of T stimulating wheel running, which is not explained by its action on muscle, as evidenced by neuromuscular studies and in a muscle-specific conditional ARKO mouse model. The action of T occurs via its free fraction, as shown by the results in SHBG-transgenic mice, and it implies both androgenic and estrogenic pathways. Both gene expression and functional studies indicate that T modulates the in vivo sensitivity to dopamine (DA) agonists. Furthermore, the restoration of wheel running by T is inhibited by treatment with DA antagonists. These findings reveal that the free fraction of T, both via AR and indirectly through aromatization into estrogens, stimulates physical activity behavior in male mice by acting on central DA pathways.


Subject(s)
Dopamine/metabolism , Dopaminergic Neurons/metabolism , Physical Conditioning, Animal/physiology , Testosterone/metabolism , Androgens/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic/metabolism , Motor Activity/physiology , Orchiectomy/methods , Receptors, Androgen/metabolism , Running/physiology
10.
Mol Cell Endocrinol ; 465: 61-72, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29155307

ABSTRACT

Calcium and phosphate are vital for the organism and constitute essential components of the skeleton. Serum levels are tightly hormonally regulated and maintained by exchange with three major sources: the intestines, the kidney and the bone. The effects of sex steroids on the bone have been extensively studied and it is well known that sex steroid deficiency induces bone loss, indirectly influencing renal calcium and phosphate homeostasis. However, it is unknown whether sex steroids also directly regulate renal calcium and phosphate handling, hereby potentially indirectly impacting on bone. The presence of androgen receptors (AR) and estrogen receptors (ER) in both human and rodent kidney, although their exact localization within the kidney remains debated, supports direct effects. Estrogens stimulate renal calcium reabsorption as well as phosphate excretion, while the effects of androgens are less clear. Many of the studies performed with regard to renal calcium and/or phosphate homeostasis do not correct for the calcium and phosphate fluxes from the bone and intestines, which complicates the differentiation between the direct effects of sex steroids on renal calcium and phosphate handling and the indirect effects via the bone and intestines. The objective of this study is to review the literature and current insight of the role of sex steroids in calcium and phosphate handling in the kidney.


Subject(s)
Calcium/metabolism , Gonadal Steroid Hormones/metabolism , Kidney/metabolism , Phosphates/metabolism , Animals , Humans , Models, Biological
11.
Mol Cell Endocrinol ; 452: 57-63, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28504114

ABSTRACT

The selective estrogen receptor modulator tamoxifen exerts estrogen agonistic or antagonistic actions on several tissues, including bone. The off-target effects of tamoxifen are one of the most widely recognized pitfalls of tamoxifen-inducible Cre recombinases (CreERs), potentially confounding the phenotypic findings. Still, the validation of tamoxifen induction schemes that minimize the side effects of the drug has not been addressed. Here, we compared the side effects on the skeleton and other androgen-responsive targets of a shortened tamoxifen regimen (2 doses of 190 mg/kg body weight by oral gavage) to a standard protocol (4 doses) and determined their efficiency in inducing CreER-mediated gene deletion. In addition, both a vehicle- and a 10-dose group, which served as a positive control for tamoxifen side effects, were also included. For this purpose, we generated male mice with a floxed androgen receptor (AR) and a neuron-specifically expressed CreER. Treatment with two doses of tamoxifen was the only regimen that did not diminish androgenic bioactivity, as assessed by both seminal vesicles and levator ani/bulbocavernosus muscle weights and serum testosterone concentrations. Similarly, trabecular and cortical femoral bone structure were dramatically altered by both the standard and high-dose protocols but not by the shortened version. Serum osteocalcin and bone-gene expression analyses confirmed the absence of effects on bone by 2 doses of tamoxifen. This protocol decreased AR mRNA levels efficiently and specifically in the nervous system. Thus, we optimized a protocol for tamoxifen-induced CreER gene deletion in mice without off-target effects on bone and male reproductive organs.


Subject(s)
Bone and Bones/drug effects , Gene Deletion , Gene Knockout Techniques , Integrases/metabolism , Recombination, Genetic/drug effects , Selective Estrogen Receptor Modulators/pharmacology , Tamoxifen/pharmacology , Analysis of Variance , Animals , Body Weight/drug effects , Cancellous Bone/drug effects , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens/agonists , Integrases/genetics , Male , Mice , Mice, Inbred C57BL , Osteocalcin/blood , Osteocalcin/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Selective Estrogen Receptor Modulators/administration & dosage , Selective Estrogen Receptor Modulators/adverse effects , Seminal Vesicles , Tamoxifen/administration & dosage , Tamoxifen/adverse effects , Testosterone/blood , Time Factors
12.
Sci Rep ; 6: 35539, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27748448

ABSTRACT

Sex hormone-binding globulin (SHBG) is the high-affinity binding protein for androgens and estrogens. According to the free hormone hypothesis, SHBG modulates the bioactivity of sex steroids by limiting their diffusion into target tissues. Still, the in vivo physiological role of circulating SHBG remains unclear, especially since mice and rats lack circulating SHBG post-natally. To test the free hormone hypothesis in vivo, we examined total and free sex steroid concentrations and bioactivity on target organs in mice expressing a human SHBG transgene. SHBG increased total androgen and estrogen concentrations via hypothalamic-pituitary feedback regulation and prolonged ligand half-life. Despite markedly raised total sex steroid concentrations, free testosterone was unaffected while sex steroid bioactivity on male and female reproductive organs was attenuated. This occurred via a ligand-dependent, genotype-independent mechanism according to in vitro seminal vesicle organ cultures. These results provide compelling support for the determination of free or bioavailable sex steroid concentrations in medicine, and clarify important comparative differences between translational mouse models and human endocrinology.


Subject(s)
Androgens/metabolism , Models, Biological , Sex Hormone-Binding Globulin/metabolism , Animals , Estrogens/metabolism , Female , Half-Life , Humans , Hypertrophy , Hypogonadism/pathology , Ligands , Male , Mice, Inbred C57BL , Mice, Transgenic , Morphogenesis , Phenotype , Reproducibility of Results , Steroids/pharmacokinetics , Tissue Distribution
13.
Bone ; 93: 33-42, 2016 12.
Article in English | MEDLINE | ID: mdl-27622887

ABSTRACT

Aging hypogonadal men are at increased risk of osteoporosis and sarcopenia. Testosterone is a potentially appealing strategy to prevent simultaneous bone and muscle loss. The androgen receptor (AR) mediates antiresorptive effects on trabecular bone via osteoblast-lineage cells, as well as muscle-anabolic actions. Sex steroids also modify the skeletal response to mechanical loading. However, it is unclear whether the effects of androgens on bone remain effective independent of mechanical stimulation or rather require indirect androgen effects via muscle. This study aims to characterize the effects and underlying mechanisms of androgens on disuse osteosarcopenia. Adult male mice received a unilateral botulinum toxin (BTx) injection, and underwent sham surgery or orchidectomy (ORX) without or with testosterone (ORX+T) or dihydrotestosterone (ORX+DHT) replacement. Compared to the contralateral internal control hindlimb, acute trabecular number and bone volume loss was increased by ORX and partially prevented DHT. T was more efficient and increased BV/TV in both hindlimbs over sham values, although it did not reduce the detrimental effect of BTx. Both androgens and BTx regulated trabecular osteoclast surface as well as tartrate-resistant acid phosphatase expression. Androgens also prevented BTx-induced body weight loss but did not significantly influence paralysis or muscle atrophy. BTx and ORX both reduced cortical thickness via endosteal expansion, which was prevented by T but not DHT. In long-term follow-up, the residual trabecular bone volume deficit in sham-BTx hindlimbs was prevented by DHT but T restored it more efficiently to pre-treatment levels. Conditional AR deletion in late osteoblasts and osteocytes or in the satellite cell lineage increased age-related trabecular bone loss in both hindlimbs without influencing the effect of BTx on trabecular osteopenia. We conclude that androgens have antiresorptive effects on trabecular disuse osteopenia which do not require AR actions on bone via muscle or via osteocytes.


Subject(s)
Androgens/therapeutic use , Bone Diseases, Metabolic/drug therapy , Bone Resorption/drug therapy , Cancellous Bone/pathology , Muscular Atrophy/drug therapy , Muscular Disorders, Atrophic/drug therapy , Acute Disease , Androgens/pharmacology , Animals , Body Weight , Bone Diseases, Metabolic/complications , Bone Diseases, Metabolic/pathology , Bone Diseases, Metabolic/physiopathology , Bone Remodeling/drug effects , Bone Resorption/complications , Bone Resorption/pathology , Bone Resorption/physiopathology , Calcification, Physiologic , Cancellous Bone/diagnostic imaging , Cancellous Bone/drug effects , Cancellous Bone/physiopathology , Cortical Bone/diagnostic imaging , Cortical Bone/drug effects , Cortical Bone/pathology , Cortical Bone/physiopathology , Extracellular Matrix Proteins/metabolism , Female , Gene Deletion , Integrases/metabolism , Male , Mice, Inbred C57BL , Muscular Atrophy/complications , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Muscular Disorders, Atrophic/complications , Muscular Disorders, Atrophic/pathology , Muscular Disorders, Atrophic/physiopathology , MyoD Protein/metabolism , Organ Size , Receptors, Androgen/metabolism , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...