Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 62(29): e202305994, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37199102

ABSTRACT

We show that cation ordering on A site columns, oppositely displaced via coupling to B site octahedral tilts, results in a polar phase of the columnar perovskite (NaY)MnMnTi4 O12 . This scheme is similar to hybrid improper ferroelectricity found in layered perovskites, and can be considered a realisation of hybrid improper ferroelectricity in columnar perovskites. The cation ordering is controlled by annealing temperature and when present it also polarises the local dipoles associated with pseudo-Jahn-Teller active Mn2+ ions to establish an additional ferroelectric order out of an otherwise disordered dipolar glass. Below TN ≈12 K, Mn2+ spins order, making the columnar perovskites rare systems in which ordered electric and magnetic dipoles may reside on the same transition metal sublattice.

2.
Phys Chem Chem Phys ; 25(6): 4862-4871, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36692371

ABSTRACT

The 1111 compounds with an alternating sequence of fluorite and antifluorite layers serve as structural hosts for the vast family of Fe-based superconductors. Here, we use neutron powder diffraction and density-functional-theory (DFT) band-structure calculations to study magnetic order of Eu2+ in the [EuF]+ fluorite layers depending on the nature of the [TAs]- antifluorite layer that can be non-magnetic semiconducting (T = Zn), magnetic semiconducting (T = Mn), or magnetic metallic (T = Fe). Antiferromagnetic transitions at TN ∼ 2.4-3 K due to an ordering of the Eu2+ magnetic moments were confirmed in all three EuTAsF compounds. Whereas in EuTAsF (T = Zn and Mn), the commensurate k1 = (½ ½ 0) stripe order pattern with magnetic moments within the a-b plane is observed, the order in EuFeAsF is incommensurate with k = (0 0.961(1) ½) and represents a cycloid of Eu2+ magnetic moments confined within the bc-plane. Additionally, the Mn2+ sublattice in EuMnAsF features a robust G-type antiferromagnetic order that persists at least up to room temperature, with magnetic moments along the c-direction. Although DFT calculations suggest stripe antiferromagnetic order in the Fe-sublattice of EuFeAsF as the ground state, neutron diffraction reveals no evidence of long-range magnetic order associated with Fe. We show that the frustrating interplane interaction J3 between the adjacent [EuF]+ layers is comparable with in-plane J1-J2 interactions already in the case of semiconducting fluorite layers [TAs]- (T = Zn and Mn) and becomes dominant in the case of the metallic [FeAs]- ones. The latter, along with a slight orthorhombic distortion, is proposed to be the origin of the incommensurate magnetic structure observed in EuFeAsF.

3.
Phys Rev Lett ; 129(21): 217601, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36461960

ABSTRACT

According to previous theoretical work, the binary oxide CuO can become a room-temperature multiferroic via tuning of the superexchange interactions by application of pressure. Thus far, however, there has been no experimental evidence for the predicted room-temperature multiferroicity. Here, we show by neutron diffraction that the multiferroic phase in CuO reaches 295 K with the application of 18.5 GPa pressure. We also develop a spin Hamiltonian based on density functional theory and employing superexchange theory for the magnetic interactions, which can reproduce the experimental results. The present Letter provides a stimulus to develop room-temperature multiferroic materials by alternative methods based on existing low temperature compounds, such as epitaxial strain, for tunable multifunctional devices and memory applications.

4.
Materials (Basel) ; 15(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36234350

ABSTRACT

The annealing behavior of (1-x)BiMg0.5Ti0.5O3−xBiZn0.5Ti0.5O3 [(1-x)BMT−xBZT] perovskite solid solutions synthesized under high pressure was studied in situ via X-ray diffraction and piezoresponse force microscopy. The as prepared ceramics show a morphotropic phase boundary (MPB) between the non-polar orthorhombic and ferroelectric tetragonal states at 75 mol. % BZT. It is shown that annealing above 573 K results in irreversible changes in the phase diagram. Namely, for compositions with 0.2 < x < 0.6, the initial orthorhombic phase transforms into a ferroelectric rhombohedral phase. The new MPB between the rhombohedral and tetragonal phases lies at a lower BZT content of 60 mol. %. The phase diagram of the BMT−BZT annealed ceramics is formally analogous to that of the commercial piezoelectric material lead zirconate titanate. This makes the BMT−BZT system promising for the development of environmentally friendly piezoelectric ceramics.

5.
Inorg Chem ; 61(36): 14428-14435, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36044365

ABSTRACT

A new member of A-site columnar-ordered A2A'A″B4O12 quadruple perovskites with the composition of Y2CuGaMn4O12 was prepared by a high-pressure, high-temperature method at 6 GPa and about 1500 K. Its crystal structure and cation distributions were studied by powder synchrotron X-ray and neutron diffraction. There is a triple A-site cation ordering with some degrees of anti-site disorder among sites occupied by 3d transition metals: [Y2]A[Cu0.8Mn0.2]A'[Ga0.8Mn0.2]A″[Mn3.6Cu0.2Ga0.2]BO12. It has the space group P42/nmc (no. 137) between 1.5 and 873 K with a = 7.33884 Å and c = 7.66251 Å at 297 K. Despite anti-site disorder, it exhibits a long-range ferrimagnetic order at TC = 115 K with the ordered moment of 2.19 µB at each B site and 0.89 µB at the A' or A″ site. Magnetic moments are aligned along the c axis; all moments are ordered ferromagnetically at the B sites, and the moments at the A' or A″ site are ordered in the opposite direction. Cu2+ doping drastically changes magnetic properties as "parent" Y2MnGaMn4O12 just shows spin-glass magnetic properties without long-range ordering. Anisotropic thermal expansion was observed in Y2CuGaMn4O12: the lattice parameter a almost linearly decreases from 1.5 K to TC and then monotonically increases up to 873 K (almost linearly from 300 K); the parameter c monotonically increases from 1.5 to 300 K and then decreases up to 600 K.

6.
Dalton Trans ; 50(43): 15458-15472, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34632992

ABSTRACT

Perovskite-structure AMnO3 manganites played an important role in the development of numerous physical concepts such as double exchange, small polarons, electron-phonon coupling, and Jahn-Teller effects, and they host a variety of important properties such as colossal magnetoresistance and spin-induced ferroelectric polarization (multiferroicity). A-site-ordered quadruple perovskite manganites AMn7O12 were discovered shortly after, but at that time their exploration was quite limited. Significant progress in their understanding has been reached in recent years after the wider use of high-pressure synthesis techniques needed to prepare such materials. Here we review this progress, and show that the AMn7O12 compounds host rich physics beyond the canonical AMnO3 materials.

7.
Science ; 369(6504): 680-684, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32764068

ABSTRACT

Long-range ordering of magnetic dipoles in bulk materials gives rise to a broad range of magnetic structures, from simple collinear ferromagnets and antiferromagnets, to complex magnetic helicoidal textures stabilized by competing exchange interactions. In contrast, dipolar order in dielectric crystals is typically limited to parallel (ferroelectric) and antiparallel (antiferroelectric) collinear alignments of electric dipoles. Here, we report an observation of incommensurate helical ordering of electric dipoles by light hole doping of the quadruple perovskite BiMn7O12 In analogy with magnetism, the electric dipole helicoidal texture is stabilized by competing instabilities. Specifically, orbital ordering and lone electron pair stereochemical activity compete, giving rise to phase transitions from a nonchiral cubic structure to an incommensurate electric dipole and orbital helix via an intermediate density wave.

8.
Inorg Chem ; 59(14): 9798-9806, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32614169

ABSTRACT

The structural and physical properties of the ß polymorph of iron tungstate Fe2WO6 have been investigated by synchrotron and neutron diffraction vs temperature, combined with magnetization and dielectric properties measurements. The monoclinic P21/a crystal structure of ß-Fe2WO6 has been determined and consists of an original network of zigzag chains of FeO6 and WO6 octahedra sharing trans and skew edges, connected through corners into a 3D structure. Magnetization measurements indicate an antiferromagnetic transition at TN = 264 K, which corresponds to a ↑↑↓↓ nearly collinear ordering of iron moments inside sequences of four edge-sharing FeO6 octahedra, as determined by neutron diffraction. A canting of the moments out of the ac plane is observed below 150 K, leading to a noncollinear antiferromagnetic structure, the P21/a' magnetic space group remaining unchanged. These results are discussed in comparison with the crystal and magnetic structures of γ-Fe2WO6 and with the magnetic couplings in other iron tungstates and trirutile Fe2TeO6.

9.
Inorg Chem ; 59(13): 9065-9076, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32515189

ABSTRACT

The formation of NaRMn2Ti4O12 compounds (R = rare earth) under high pressure (about 6 GPa) and high temperature (about 1750 K) conditions was studied. Such compounds with R = Sm, Eu, Gd, Dy, Ho, Y adopt an A-site columnar-ordered quadruple-perovskite structure with the generic chemical formula A2A'A″B4O12. Their crystal structures were studied by powder synchrotron X-ray and neutron diffraction between 1.5 and 300 K. They maintain a paraelectric structure with centrosymmetric space group P42/nmc (No. 137) at all temperatures, in comparison with the related CaMnTi2O6 perovskite, in which a ferroelectric transition occurs at 630 K. The centrosymmetric structure was also confirmed by second-harmonic generation. It has a cation distribution of [Na+R3+]A[Mn2+]A'[Mn2+]A″[Ti4+4]BO12 (to match with the generic chemical formula) with statistical distributions of Na+ and R3+ at the large A site and a strongly split position of Mn2+ at the square-planar A' site. We found a C-type long-range antiferromagnetic structure of Mn2+ ions at the A' and A″ sites below TN = 12 K for R = Dy and found that the presence of Dy3+ disturbs the long-range ordering of Mn2+ below a second transition at lower temperatures. The first magnetic transition occurs below 8-13 K in all compounds, but the second magnetic transition occurs only for R = Dy, Sm, Eu. All compounds show large dielectric constants of a possible extrinsic origin similar to that of CaCu3Ti4O12. NaRMn2Ti4O12 with R = Er-Lu crystallized in the GdFeO3-type Pnma perovskite structure, and NaRMn2Ti4O12 with R = La, Nd contained two perovskite phases: an AA'3B4O12-type Im3̅ phase and a GdFeO3-type Pnma phase.

10.
Inorg Chem ; 59(13): 8727-8735, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32516538

ABSTRACT

The temperature behavior of the crystal structure as well as dielectric and magnetic properties of the perovskite bismuth chromate ceramics with the 10 mol % Cr3+-to-Sc3+ substitution were studied and compared with those of the unmodified compound. Using a high-pressure synthesis, BiCrO3 and BiCr0.9Sc0.1O3 were obtained as metastable perovskite phases which are monoclinic C2/c with the √6ap × âˆš2ap × âˆš6ap superstructure (where ap is the primitive perovskite unit-cell parameter) under ambient conditions. At room temperature, the unit cell volume of BiCr0.9Sc0.1O3 is ∼1.3% larger than that of BiCrO3. Both perovskites undergo a reversible structural transition into a nonpolar GdFeO3-type phase (orthorhombic Pnma, √2ap × 2ap × âˆš2ap) in the temperature ranges of 410-420 K (BiCrO3) and 470-520 K (BiCr0.9Sc0.1O3) with a relative jump of the primitive perovskite unit cell volume of about -1.6 and -2.0%, respectively. Temperature dependences of the complex dielectric permittivity demonstrate anomalies in the phase transition ranges. The Pnma-to-C2/c crossover in BiCrO3 is accompanied by a decrease in the direct current (dc) conductivity, while in BiCr0.9Sc0.1O3 the conductivity increases. The onset of an antiferromagnetic order in BiCr0.9Sc0.1O3 is observed at the Néel temperature (TN) of about 85 K as compared with TN = 110 K in BiCrO3. In contrast to BiCrO3, which exhibits a spin reorientation at Tsr ∼ 72 K, no such a transition occurs in BiCr0.9Sc0.1O3.

11.
Inorg Chem ; 58(21): 14830-14841, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31638779

ABSTRACT

Y2MnGa(Mn4-xGax)O12 solid solutions were synthesized at high pressure of ∼6 GPa and high temperature of ∼1570 K for the 0 ≤ x ≤ 3 compositional range. Synchrotron X-ray and neutron powder diffraction were used to study the crystal structures and cation distributions. These solutions adopt the parent structure of the A-site columnar-ordered quadruple perovskite family with space group P42/nmc (No. 137). They have lattice parameters of a = 7.36095 Å and c = 7.753 84 Å (x = 0), a = 7.361 68 Å and c = 7.716 16 Å (x = 1), a = 7.360 34 Å and c = 7.67142 Å (x = 2), and a = 7.363 93 Å and c = 7.616 85 Å (x = 3) at room temperature. The x = 0 sample has a cation distribution of [Y3+2]A[Mn3+]A'[Ga3+0.68Mn2+0.32]A″[Mn3.68Ga0.32]BO12 with a preferred localization of Ga3+ in the tetrahedral A″ site and with a small amount of Ga3+ in the octahedral B site. A complete triple A-site order, [Y3+2]A[Mn3+]A'[Ga3+]A″[Mn3+4-xGa3+x]BO12, is realized for x ≥ 1. All samples demonstrate spin-glass-like magnetic properties, and the absence of a long-range magnetic order at the ground state at 1.5 K was confirmed by neutron diffraction for the x = 1 sample. First-principles calculations indicated the spin-glass-like magnetic ordering is derived from the Ga substitution to the B sites and gave evidence that the ideal cation distribution could produce robust ferromagnetism in this family of perovskites.

12.
Chem Commun (Camb) ; 55(32): 4683-4686, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30938726

ABSTRACT

A post-synthesis thermal treatment of metastable phases in the high-pressure stabilised perovskite BiFe1-yScyO3 system results in the irreversible formation of polymorphs which represent novel polar and antipolar structures with interesting magnetic properties. Such annealing-stimulated polymorphism is believed to be a general phenomenon which can be found in other systems.


Subject(s)
Bismuth/chemistry , Iron Compounds/chemistry , Oxides/chemistry , Scandium/chemistry , Magnetic Phenomena , Phase Transition , Pressure
13.
Inorg Chem ; 58(5): 3492-3501, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30768249

ABSTRACT

Sm2MnMn(Mn4- xTi x)O12 with 1 ≤ x ≤ 3 were prepared by a high-pressure, high-temperature method at 6 GPa and about 1570-1670 K. They belong to a family of A-site columnar-ordered quadruple perovskites A2A'A″B4O12, where A' is a site with a square-planar coordination and A″ is a site with a tetrahedral coordination. Their crystal structures were investigated using synchrotron X-ray and neutron powder diffraction. They crystallize in space group P42/ nmc (No. 137) with a = 7.41172 Å and c = 7.97131 Å for x = 1, a = 7.54945 Å and c = 7.76756 Å for x = 2, and a = 7.63949 Å and c = 7.70339 Å for x = 3 at 295 K. The determined charge and cation distributions are [Sm3+1.88Mn2+0.12]A[Mn3+]A'[Mn2+0.88Sm3+0.12]A″[Mn3+3Ti4+]BO12 for x = 1, [Sm3+1.91Mn2+0.09]A[Mn2+]A'[Mn2+0.91Sm3+0.09]A″[Mn3+2Ti4+2]BO12 for x = 2, and [Sm3+1.88Mn2+0.12]A[Mn2+0.88Sm3+0.12]A'[Mn2+]A″[Mn2+Ti4+3]BO12 for x = 3. Mn and Ti are distributed randomly in one B site in all compounds with the average oxidation state changing from +3.25 to +3.5 per one B atom, and such flexibility is realized because Mn at the A' site can change its oxidation state between +2 and +3. Sm and Mn are slightly disordered between the A and A″ sites for x = 1 and 2, and between the A and A' sites for x = 3. The x = 1 sample shows spin-canted antiferromagnetic properties with TN = 27 K, and the x = 2 sample, with TN = 62 K. On the other hand, the x = 3 sample is a ferrimagnet, confirmed by neutron diffraction, with TC = 40 K. The x = 3 sample shows relaxor-like dielectric properties below 220 K.

14.
Nat Commun ; 9(1): 2996, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30065294

ABSTRACT

The ABO3 perovskite oxides exhibit a wide range of interesting physical phenomena remaining in the focus of extensive scientific investigations and various industrial applications. In order to form a perovskite structure, the cations occupying the A and B positions in the lattice, as a rule, should be different. Nevertheless, the unique binary perovskite manganite Mn2O3 containing the same element in both A and B positions can be synthesized under high-pressure high-temperature conditions. Here, we show that this material exhibits magnetically driven ferroelectricity and a pronounced magnetoelectric effect at low temperatures. Neutron powder diffraction revealed two intricate antiferromagnetic structures below 100 K, driven by a strong interplay between spin, charge, and orbital degrees of freedom. The peculiar multiferroicity in the Mn2O3 perovskite is ascribed to a combined effect involving several mechanisms. Our work demonstrates the potential of binary perovskite oxides for creating materials with highly promising electric and magnetic properties.

15.
Chemphyschem ; 19(19): 2449-2452, 2018 10 05.
Article in English | MEDLINE | ID: mdl-29938885

ABSTRACT

There is an emerging topic in the science of perovskite materials: A-site columnar-ordered A2 A'A''B4 O12 quadruple perovskites, which have an intrinsic triple order at the A sites. However, in many examples reported so far, A' and A'' cations are the same, and the intrinsic triple order is hidden. Here, we investigate structural properties of Dy2 CuMnMn4 O12 (1) and Ho2 MnGaMn4 O12 (2) by neutron and X-ray powder diffraction and prove the triple order at the A sites. The cation distributions determined are [Ho2 ]A [Mn]A' [Ga0.66 Mn0.34 ]A'' [Mn3.66 Ga0.34 ]B O12 and [Dy2 ]A [Cu0.73 Mn0.27 ]A' [Mn0.80 Dy0.20 ]A'' [Mn1.89 Cu0.11 ]B1 [Mn2 ]B2 O12 . There are clear signatures of Jahn-Teller distortions in 1 and 2, and the orbital pattern is combined with an original type of charge ordering in 1. Columnar-ordered quadruple perovskites represent a new playground to study complex interactions between different electronic degrees of freedom. No long-range magnetic order was found in 2 by neutron diffraction, and its magnetic properties in low fields are dominated by an impurity with negative magnetization or magnetization reversal. On the other hand, 1 shows three magnetic transitions at 21, 125, and 160 K.

16.
Inorg Chem ; 57(10): 5987-5998, 2018 May 21.
Article in English | MEDLINE | ID: mdl-29722530

ABSTRACT

A-site-ordered quadruple perovskites RMn7O12 with R = Sm, Eu, Gd, and Tb were synthesized at high pressure and high temperature (6 GPa and ∼1570 K), and their structural, magnetic, and dielectric properties are reported. They crystallize in space group I2/ m at room temperature. All four compounds exhibit a high-temperature phase transition to the cubic Im3̅ structure at ∼664 K (Sm), 663 K (Eu), 657 K (Gd), and 630 K (Tb). They all show one magnetic transition at TN1 ≈ 82-87 K at zero magnetic field, but additional magnetic transitions below TN2 ≈ 12 K were observed in SmMn7O12 and EuMn7O12 at high magnetic fields. Very weak kinklike dielectric anomalies were observed at TN1 in all compounds. We also observed pyroelectric current peaks near 14 K and frequency-dependent sharp steps in dielectric constant (near 18-35 K)-these anomalies are probably caused by dielectric relaxation, and they are not related to any ferroelectric transitions. TbMn7O12 shows signs of nonstoichiometry expressed as (Tb1- xMn x)Mn7O12, and these samples exhibit negative magnetization or magnetization reversal effects of an extrinsic origin on zero-field-cooled curves in intermediate temperature ranges. The crystal structures of SmMn7O12 and EuMn7O12 were refined from neutron powder diffraction data at 100 K, and the crystal structures of GdMn7O12 and (Tb0.88Mn0.12)Mn7O12 were studied by synchrotron X-ray powder diffraction at 295 K.

17.
Phys Chem Chem Phys ; 20(6): 4442-4454, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29372747

ABSTRACT

Cubic perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) is one of the mixed ionic-electronic conductors with the highest oxygen permeability known to date. It serves as a parent material for the development of functional derivatives for electrochemical applications including oxygen separation membranes, solid electrolyte cell electrodes and electrocatalysts for the oxygen evolution reaction. The present study is focused on the determination of the precise stability boundaries of cubic perovskite BSCF employing a coulometric titration technique in combination with thermogravimetric analysis, X-ray and neutron diffraction, and molecular dynamics simulations. Both the low-p(O2) and high-p(O2) stability boundaries at 700-950 °C were found to correspond to a fixed value of oxygen content in the perovskite lattice of 3 - δ = ∼2.13 and ∼2.515, respectively. The stability limits in this temperature range are expressed by the following equations: high-p(O2) boundary: log p(O2) (atm) (±0.1) = -10 150/T (K) + 8.055; low-p(O2) boundary: log p(O2) (atm) (±0.03) = -20 750/T (K) + 4.681. The p(O2)-T phase diagram of the BSCF system under oxidizing conditions is addressed in a wider temperature range and is shown to include a region of precipitation of a "low-temperature" phase occurring at 400-500 °C. The fraction of the low-temperature precipitate, which co-exists with the cubic perovskite phase and is stable up to 790-820 °C, increases upon increasing p(O2) in the range 0.21-1.0 atm.

18.
Inorg Chem ; 56(16): 9742-9753, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28783316

ABSTRACT

Inverse trirutile Mn2TeO6 was investigated using in situ neutron and X-ray powder diffraction between 700 °C and room temperature. When the temperature was decreased, a structural phase transition was observed around 400 °C, from a tetragonal (P42/mnm) to a monoclinic phase (P21/c), involving a doubling of the cell parameter along b. This complex monoclinic structure has been solved by combining electron, neutron, and synchrotron powder diffraction techniques at room temperature. It can be described as a distorted superstructure of the inverse trirutile structure, in which compressed and elongated MnO6 octahedra alternate with more regular TeO6 octahedra, forming a herringbone-like pattern. Rietveld refinements, carried out with symmetry-adapted modes, show that the structural transition, arguably of Jahn-Teller origin, is driven by a single primary mode.

19.
Angew Chem Int Ed Engl ; 56(35): 10423-10427, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28670864

ABSTRACT

Charge and orbital degrees of freedom determine properties of many materials, and are central to many important phenomena. At high temperatures, thermal fluctuations overcome them, and high-symmetry structures are realized. On decreasing temperature, different charge- and orbital-order transitions take place accompanied by symmetry lowering. Remarkable exceptions to this general tendency, realized in Cu-doped BiMn7 O12 quadruple perovskites, are presented. Introduction of Cu2+ produces mixtures of Mn3+ and Mn4+ and charge degree of freedom. BiCuMn6 O12 (and compositions in the vicinity) exhibits well-defined 1:3 charge order of Mn4+ and Mn3+ and orbital order of Mn3+ near room temperature, but both charge and orbital orders collapse below about 115 K with the reentrance of the high-temperature cubic Im3‾ phase. What is interesting the collapse can be controlled by a magnetic field even without long-range magnetic order, and the collapsed phase shows nearly zero thermal expansion.

20.
Inorg Chem ; 55(9): 4381-90, 2016 05 02.
Article in English | MEDLINE | ID: mdl-27078522

ABSTRACT

The physical characterization and the extended crystallographic study of the double perovskite system Pb2Mn0.6Co0.4WO6 indicate an improper ferroelectric contribution to the polarization induced by the magnetic ordering. In the paramagnetic phase, the compound displays a centrosymmetric orthorhombic double perovskite structure with the Pmcn1' symmetry. The structure is strongly distorted by the lead stereoactivity. Magnetization measurements show two magnetic transitions at 188 and 9 K, but the time-of-flight neutron diffraction data provide evidence for a long-range magnetic ordering only below the second transition. Quantitative structure refinements combined with a comprehensive symmetry analysis indicate the Pm'c21' magnetic space group to be the adequate symmetry to describe the structural distortions and spin ordering in the ground state of the system. The symmetry implies a coexistence of a spontaneous ferromagnetic moment and a ferroelectric polarization along the orthogonal b- and c-axes, respectively, in the long-range ordered structure. Macroscopic measurements confirm the presence of the spontaneous polarization also below the first transition at 188 K, where only short-range magnetic correlations are evidenced by diffuse scattering in neutron diffraction.

SELECTION OF CITATIONS
SEARCH DETAIL
...