Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38931690

ABSTRACT

This paper introduces an innovative and cost-effective approach for developing a millimeter-wave (mmWave) frequency-reconfigurable dielectric resonator antenna (DRA), which has not been reported before. The antenna integrates two rectangular DRA elements, where each DRA is centrally fed via a slot. A strategically positioned PIN diode is employed to exert control over performance by modulating the ON-OFF states of the diode, thereby simplifying the design process and reducing losses. In the OFF state, the first DRA, RDRA-I, exclusively supports the TE311 resonance mode at 24.3 GHz, offering a 2.66% impedance bandwidth and achieving a maximum broadside gain of 9.2 dBi. Conversely, in the ON state, RDRA-I and RDRA-II concurrently operate in the TE513 resonance mode at 29.3 GHz, providing a 2.7% impedance bandwidth and yielding a high gain of up to 11.8 dBi. Experimental results substantiate that the proposed antenna presents an attractive solution for applications necessitating frequency-reconfigurable and high-performance mmWave antennas in 5G and Beyond 5G (B5G) communication systems.

2.
Sensors (Basel) ; 24(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38257414

ABSTRACT

This paper presents a comprehensive assessment of the performance of on-chip circularly polarized (CP) circular loop antennas that have been designed and fabricated to operate in the Q/V frequency band. The proposed antenna design incorporates two concentric loops, with the outer loop as the active element and the inner loop enhancing the CP bandwidth. The study utilizes gallium arsenide (GaAs) and silicon carbide (4H-SiC) semiconductor wafer substrates. The measured results highlight the successful achievement of impedance matching at 40 GHz and 44 GHz for the 4H-SiC and GaAs substrates, respectively. Furthermore, both cases yield an axial ratio (AR) of less than 3 dB, with variations in bandwidths and frequency bands contingent upon the dielectric constant of the respective substrate material. Moreover, the outcomes confirm that utilizing 4H-SiC substrates results in a significantly higher radiation efficiency of 95%, owing to lower substrate losses. In pursuit of these findings, a 4-element circularly polarized loop array antenna has been fabricated for operation at 40 GHz, employing a 4H-SiC wafer as a low-loss substrate. The results underscore the antenna's remarkable performance, exemplified by a broadside gain of approximately 9.7 dBic and a total efficiency of circa 92%. A close agreement has been achieved between simulated and measured results.

3.
Micromachines (Basel) ; 15(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38258261

ABSTRACT

A novel quasi-twisted miniaturized wideband branch line coupler (BLC) is proposed. The design is based on bisecting the conventional microstrip line BLC transversely and folding bisected sections on double-layered substrates with a common ground plane in between. The input and output terminals, each with a length of λg/4, and the pair of quarter-wavelength horizontal parallel arms are converted into a Z-shaped meandered microstrip line in the designed structure. Conversely, the pair of quarter-wavelength vertical arms are halved into two lines and transformed into a periodically loaded slow-wave structure. The bisected parts of the BLC are placed on the opposite side of the doubled-layer substrate and connected through four vias passing through the common ground plane. This technique enabled a compact BLC size of 6.4 × 18 mm2, which corresponds to a surface area miniaturization by ~50% as compared to the classical BLC size of 10 × 23 mm2 at 6 GHz. Moreover, the attained relative bandwidth is 73.9% (4.6-10 GHz) for S11, S33, S21, and the phase difference between outputs (∠S21 - ∠S41). However, if a coupling parameter (S41) of up to -7.5 dB is considered, then the relative bandwidth reduces to 53.9% (4.6-10 GHz) for port 1 as the input. Similarly, for port 3 as the input, the obtained bandwidth is 75.8% (4.5-10 GHz) for S33, S11, S43, and the phase difference between outputs (∠S43 - ∠S23). Likewise, this bandwidth reduces to 56% (4.5-8 GHz) when a coupling parameter (S23) of up to -7.5 dB is considered. In contrast, the relative bandwidth for the ordinary BLC is 41% at the same resonant frequency. The circuit is constructed on a double-layered low-cost FR4 substrate with a relative permittivity of 4.3 and a loss tangent of 0.025. An isolation of -13 dB was realized in both S13 and S31 demonstrating an excellent performance. The transmission coefficients between input/output ports S21, S41, S23, and S43 are between -3.1 dB to -3.5 dB at a frequency of 6 GHz. Finally, the proposed BLC provides phase differences between output ports of 90.5° and 94.8° at a frequency of 6 GHz when the input ports 1 and 3 are excited, respectively. The presented design offers the potential of being utilized as a unit cell for building a Butler matrix (BM) for sub-6 GHz 5G beamforming networks.

4.
Sensors (Basel) ; 23(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38139473

ABSTRACT

A singly fed reconfigurable circular loop antenna is proposed for millimeter-wave (mmWave) communication systems. This antenna's distinctive feature lies in its capacity to adjust both polarization and bandwidth characteristics, a capability made possible by the strategic integration of two PIN diodes. These diodes are engineered to function in various modes, allowing for three distinct polarization states and accommodating two distinct bandwidths. A meticulous alignment of these PIN diodes enables the utilization of a single DC bias network as a highly effective RF choke, which simplifies the design and reduces the associated losses. Additionally, a planar biasing network that consists of coplanar strip-lines (CPS) has been employed eliminating the need for lumped elements. The simple and totally planar configuration offers a choice of right-hand circularly polarized (RHCP) radiation or left-hand circularly polarized (LHCP) radiation at 28 GHz. This is accompanied by impedance matching and axial ratio (AR) bandwidths of 12.9% and 8%, respectively, over the same frequency range with a gain of 7.5 dBic. Moreover, when the PIN diodes are unbiased, the antenna offers linear polarization (LP) over two narrow bandwidths at 27 GHz and 29 GHz featuring a maximum gain of 7.2 dBic. Therefore, the proposed configuration offers three operating modes: wide-band RHCP, wide-band-LHCP, and LP over dual narrow bands. Significantly, simulated results closely align with the measured outcomes, affirming the robustness and accuracy of this design.

5.
Micromachines (Basel) ; 14(9)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37763937

ABSTRACT

In this study, a millimeter-wave (mmWave) dielectric resonator antenna (DRA) with an omnidirectional pattern is presented for the first time. A key feature of the proposed design is the utilization of a planar feed network to achieve omnidirectional radiation from a rectangular DRA, which has not been reported previously in the open literature. In addition, the proposed antenna offers multiband operation with different types of radiation patterns. The degenerate TE121/TE211 modes were excited at 28.5 GHz with an overall internal electromagnetic field distribution that was similar to that of the HEM21δ mode of a cylindrical DRA. The achieved omnidirectional bandwidth and gain were 1.9% and 4.3 dBi, respectively. Moreover, broadside radiation was achieved by exciting the TE111 fundamental mode at 17.5 GHz together with the resonance of the feeding ring-slot at 23 GHz. The triple-band operation offers a highly versatile antenna that can be utilized in on-body and off-body communications. Furthermore, the proposed design was validated through measurements, demonstrating good agreement with simulations.

6.
Micromachines (Basel) ; 14(2)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36838136

ABSTRACT

A novel approach is proposed to design a circularly polarized (CP) hemispherical dielectric resonator antenna (DRA) with a wide axial ratio (AR) bandwidth by incorporating an additional dielectric substrate between the antenna and the ground plane. This is in addition to the lower feeding substrate that is located between the ground plane on one side and the feeding microstrip line on the other side. Adding another substrate on top of the ground plane provided an additional degree of freedom in the design that facilitated the achievement of ab 18% AR bandwidth. In addition, an integrated hemispherical DRA and perforated substrate configuration was utilized to achieve optimum effective substrate permittivity and overcome the DRA alignment and assembly challenges while maintaining the achieved wide CP bandwidth. A close agreement was achieved between measurements and simulations.

7.
Sensors (Basel) ; 22(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35808550

ABSTRACT

A compact multiple-input-multiple-output (MIMO) dielectric resonator antenna (DRA) that is suitable for internet of things (IoT) sensor networks is proposed with reduced coupling between elements. Two rectangular-shaped DRAs have been placed on the opposite sides of a Rogers substrate and each is fed using a coplanar waveguide (CPW) feed with slots etched in a dedicated metal ground plane that is located under the DRA. Moreover, locating the elements at the opposite sides of the substrate has improved the isolation by 27 dB without the need to incorporate additional complex structures, which has reduced the overall antenna size. Furthermore, a dual band operation is achieved since each antenna resonates at two frequencies: 28 GHz and 38 GHz with respective impedance matching bandwidths of 18% and 13%. As a result, the corresponding data rates are also increased independently. In addition to the advantages of improved isolation, compact size and dual band operation, the proposed configuration offers a diversity gain (DG), envelope correlation coefficient (ECC) and channel capacity loss (CCL) of 9.98 dB, 0.007, 0.06 bits/s/Hz over the desired bands, respectively. A prototype has been built with good agreement between simulated and measured results.

8.
Sensors (Basel) ; 21(8)2021 Apr 11.
Article in English | MEDLINE | ID: mdl-33920351

ABSTRACT

In the paper, an extremely compact multiple-input-multiple-output (MIMO) antenna is proposed for portable wireless ultrawideband (UWB) applications. The proposed prototype consists of four monopole antenna elements, which are placed perpendicularly to achieve polarization diversity. In addition, the mutual coupling between antenna elements is suppressed by designing the gap between the radiation element and the ground plane. Moreover, a matching stub has been connected to the feedline to ensure impedance matching in high frequency. Both simulated and measured results indicate that the proposed antenna has a bandwidth of 3-20 GHz, with a high isolation better than 17 dB. In addition, the designed MIMO antenna offers excellent radiation characteristics and stable gain over the whole working band. The envelope correlation coefficient (ECC) is less than 0.1, which shows that the antenna can meet the polarization diversity characteristics well.

SELECTION OF CITATIONS
SEARCH DETAIL