Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125664

ABSTRACT

Kirsten Rat Sarcoma (KRAS) is the most commonly mutated oncogene in colorectal carcinoma (CRC). We have previously reported the interactions between microsatellite instability (MSI), DNA promoter methylation, and gene expression. In this study, we looked for associations between KRAS mutation, gene expression, and methylation that may help with precision medicine. Genome-wide gene expression and DNA methylation were done in paired CRC tumor and surrounding healthy tissues. The results suggested that (a) the magnitude of dysregulation of many major gene pathways in CRC was significantly greater in patients with the KRAS mutation, (b) the up- and down-regulation of these dysregulated gene pathways could be correlated with the corresponding hypo- and hyper-methylation, and (c) the up-regulation of CDKN2A was more pronounced in tumors with the KRAS mutation. A recent cell line study showed that there were higher CDKN2A levels in 5-FU-resistant CRC cells and that these could be down-regulated by Villosol. Our findings suggest the possibility of a better response to anti-CDKN2A therapy with Villosol in KRAS-mutant CRC. Also, the more marked up-regulation of genes in the proteasome pathway in CRC tissue, especially with the KRAS mutation and MSI, may suggest a potential role of a proteasome inhibitor (bortezomib, carfilzomib, or ixazomib) in selected CRC patients if necessary.


Subject(s)
Colorectal Neoplasms , DNA Methylation , Gene Expression Regulation, Neoplastic , Mutation , Proto-Oncogene Proteins p21(ras) , Transcriptome , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Gene Expression Regulation, Neoplastic/drug effects , Male , Female , Middle Aged , Aged , Gene Expression Profiling , Microsatellite Instability , Epigenome , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism
2.
Cells ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38920684

ABSTRACT

Exposure to inorganic arsenic (As) is recognized as a risk factor for non-melanoma skin cancer (NMSC). We followed up with 7000 adults for 6 years who were exposed to As. During follow-up, 2.2% of the males and 1.3% of the females developed basal cell carcinoma (BCC), while 0.4% of the male and 0.2% of the female participants developed squamous cell carcinoma (SCC). Using a panel of more than 400 cancer-related genes, we detected somatic mutations (SMs) in the first 32 NMSC samples (BCC = 26 and SCC = 6) by comparing paired (tissue-blood) samples from the same individual and then comparing them to the SM in healthy skin tissue from 16 participants. We identified (a) a list of NMSC-associated SMs, (b) SMs present in both NMSC and healthy skin, and (c) SMs found only in healthy skin. We also demonstrate that the presence of non-synonymous SMs in the top mutated genes (like PTCH1, NOTCH1, SYNE1, PKHD1 in BCC and TP53 in SCC) significantly affects the magnitude of differential expressions of major genes and gene pathways (basal cell carcinoma pathways, NOTCH signaling, IL-17 signaling, p53 signaling, Wnt signaling pathway). These findings may help select groups of patients for targeted therapy, like hedgehog signaling inhibitors, IL17 inhibitors, etc., in the future.


Subject(s)
Arsenic , Mutation , Skin Neoplasms , Transcriptome , Humans , Skin Neoplasms/genetics , Arsenic/toxicity , Female , Mutation/genetics , Male , Transcriptome/genetics , Transcriptome/drug effects , Middle Aged , Carcinoma, Basal Cell/genetics , Carcinoma, Squamous Cell/genetics , Adult , Gene Expression Profiling , Aged , Gene Expression Regulation, Neoplastic/drug effects
3.
Medicina (Kaunas) ; 60(3)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38541076

ABSTRACT

Background and Objective: In sporadic colorectal carcinomas (CRC), microsatellite instability (MSI) pathways play important roles. Previously, we showed differences in DNA methylation patterns in microsatellite stable (MSS) colorectal carcinomas and MSI-CRC. In the current study, we explore the similarities and differences in gene expression profiles in MSS and MSI at the gene level and at the pathway level to better understand CRC pathogenesis and/or the potential for therapeutic opportunities. Material and Methods: Seventy-one CRC patients (MSI = 18, MSS = 53) were studied. Paired tumor and adjacent normal tissues were used for genome-wide gene expression assays. Result: At the gene level, we compared the list of differentially expressed genes (fold change (FC) ≥ 3 and FDR < 0.05) in tumor tissues compared to corresponding normal tissue in CRC patients with MSI tumors (190 genes) and MSS tumors (129 genes). Of these, 107 genes overlapped. The list of genes that were differentially expressed in MSI tumors only showed enrichment predominantly in two broad categories of pathways-(a) Inflammation-related pathways including the interleukin-17 (IL-17) signaling pathway, tumor necrosis factor (TNF) signaling pathway, chemokine signaling, nuclear factor kappa B (NFκB) signaling, and cytokine-cytokine interactions, and (b) metabolism-related pathways, including retinol metabolism, steroid hormone biosynthesis, drug metabolism, pentose and glucoronate interconversions, and ascorbate and aldarate metabolism. The genes in inflammation-related pathways were up-regulated whereas genes in metabolism-related pathways were down-regulated in MSI tumor tissue. Pathway-level analysis also revealed similar results confirming the gene enrichment findings. For example, the 150 genes involved in the IL-17 signaling pathway were on average up-regulated by 1.19 fold (CI 1.16-1.21) in MSI compared to 1.14 fold (CI 1.13-1.16) in MSS patients (interaction p = 0.0009). Conclusions: We document an association between MSI status and differential gene expression that broadens our understanding of CRC pathogenesis. Furthermore, targeting one or more of these dysregulated pathways could provide the basis for improved therapies for MSI and MSS CRC.


Subject(s)
Colorectal Neoplasms , Microsatellite Instability , Humans , Interleukin-17/genetics , Transcriptome/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Inflammation/genetics , Microsatellite Repeats
SELECTION OF CITATIONS
SEARCH DETAIL