Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2310082, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470193

ABSTRACT

Electrochemical conversion of nitrate, a prevalent water pollutant, to ammonia (NH3 ) is a delocalized and green path for NH3 production. Despite the existence of different nitrate reduction pathways, selectively directing the reaction pathway on the road to NH3 is now hindered by the absence of efficient catalysts. Single-atom catalysts (SACs) are extensively investigated in a wide range of catalytic processes. However, their application in electrocatalytic nitrate reduction reaction (NO3 - RR) to NH3 is infrequent, mostly due to their pronounced inclination toward hydrogen evolution reaction (HER). Here, Ni single atoms on the electrochemically active carrier boron, nitrogen doped-graphene (BNG) matrix to modulate the atomic coordination structure through a boron-spanning strategy to enhance the performance of NO3 - RR is designed. Density functional theory (DFT) study proposes that BNG supports with ionic characteristics, offer a surplus electric field effect as compared to N-doped graphene, which can ease the nitrate adsorption. Consistent with the theoretical studies, the as-obtained NiSA@BNG shows higher catalytic activity with a maximal NH3 yield rate of 168 µg h-1  cm-2 along with Faradaic efficiency of 95% and promising electrochemical stability. This study reveals novel ways to rationally fabricate SACs' atomic coordination structure with tunable electronic properties to enhance electrocatalytic performance.

2.
Small ; 19(44): e2304686, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37715055

ABSTRACT

The fabrication of low-cost, effective, and highly integrated nanostructured materials through simple and reproducible methods for high-energy-density supercapacitors is highly desirable. Herein, an activated carbon cloth (ACC) is designed as the functional scaffold for supercapacitors and treated hydrothermally to deposit NiCo nanoneedles working as internal core, followed by a dip-dry coating of NiOOH nanoflakes core-shell and uniform hydrothermal deposition of CoMoO4 nanosheets serving as an external shell. The structured core-shell heterostructure ACC@NiCo@NiOOH@CoMoO4 electrode resulted in exceptional specific areal capacitance of 2920 mF cm-2 and exceptional cycling stability for 10 000 cycles. Moreover, the fabricated electrode is developed into an asymmetric supercapacitor which demonstrates excellent areal capacitance, energy density, and power density within the broad potential window of 1.7 V with a cycling life of 92.4% after 10 000 charge-discharge cycles, which reflects excellent cycle life. The distinctive core-shell structure, highly conductive substrate, and synergetic effect of coated material results in more electrochemical active sites and flanges for effective electrons and ion transportation. This unique technique provides a new perspective for cost-efficient supercapacitor applications.

3.
J Colloid Interface Sci ; 624: 320-337, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35660901

ABSTRACT

Bimetallic nanostructures composited with carbonaceous materials are the potential contenders for quantitative glucose measurement owing to their unique nanostructures, high biomimetic activity, synergistic effects, good conductivity and chemical stability. In the present work, chemical vapors deposition technique has been employed to grow 3D carbon nanocoils (CNCs) with a chiral morphology on hierarchical macroporous nickel foam (NF) to get a CNCs/NF scaffold. Following, bimetallic Cu@Ni core-shell nanoparticles (CSNPs) are effectively coupled with this scaffold through a facile solvothermal route in order to fabricate a binder-free novel Cu@Ni CSNPs/CNCs/NF hybrid nanostructure. The constructed free-standing 3D hierarchical composite electrode guarantees highly efficient glucose redox activity due to core-shell synergistic effects, enhanced electrochemical active surface area, excellent electrochemical stability, improved conductivity with better ion diffusivity and accelerated reaction kinetics. Being a non-enzymatic glucose sensor, this electrode achieves highly swift response time of 0.1 s, ultra-high sensitivity of 6905 µA mM-1 cm-2, low limit of detection of 0.03 µM along with potential selectivity and good storage stability. Moreover, the proposed sensor is also tested successfully for the determination of glucose concentration in human serum samples under good recovery ranging from 96.6 to 102.1 %. The 3D Cu@Ni CSNPs/CNCs/NF composite electrode with unprecedented catalytic performance can be utilized as an ideal biomimetic catalyst in the field of non-enzymatic glucose sensing.


Subject(s)
Nanoparticles , Nickel , Carbon , Electrochemical Techniques/methods , Electrodes , Glucose , Humans , Nickel/chemistry
4.
Nanoscale ; 13(27): 11943-11952, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34198318

ABSTRACT

Well-organized substrate materials are of considerable significance in the development of energy-efficient pseudocapacitor electrodes. Herein, functionalized three-dimensional (3D) carbon nanocoils on nickel foam (CNCs/NF) have been used as the substrate to grow faradaic nickel cobaltite (NiCo2O4) via a solvothermal method. The arrays of NiCo2O4 were assembled by interconnected ultrathin nanosheets with random inter-particle pores. The number of electroactive sites increased specifically because of the porous feature of NiCo2O4 nanosheets and the 3D structure of CNCs/NF. Moreover, the CNCs/NF network aided the electrolyte ions in diffusing deeply within the architecture. The NiCo2O4/CNCs/NF composite exhibited an outstanding specific capacitance of 2821 F g-1 at the current density of 1 A g-1, a remarkable rate capability (82.4%) and long cyclic stability (91.7% after 3000 cycles). Such encouraging electrochemical performance was attributed mainly to the synergistic interactions of NiCo2O4 arrays and CNCs/NF substrate that helped achieve efficient redox reactions, enhanced ion diffusivity and excellent electron conductivity. In summary, this binder-free NiCo2O4/CNCs/NF composite electrode paves a way towards the synthesis of highly efficacious electrodes for supercapacitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...