Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1146562, 2023.
Article in English | MEDLINE | ID: mdl-37124235

ABSTRACT

Introduction: Drug delivery systems are the topmost priority to increase drug safety and efficacy. In this study, hybrid porous silicates SBA-15 and its derivatives SBA@N and SBA@3N were synthesized and loaded with an anticancer drug, 5-fluorouracil. The drug release was studied in a simulated physiological environment. Method: These materials were characterized for their textural and physio-chemical properties by scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), small-angle X-ray diffraction (SAX), and nitrogen adsorption/desorption techniques. The surface electrostatics of the materials was measured by zeta potential. Results: The drug loading efficiency of the prepared hybrid materials was about 10%. In vitro drug release profiles were obtained in simulated fluids. Slow drug release kinetics was observed for SBA@3N, which released 7.5% of the entrapped drug in simulated intestinal fluid (SIF, pH 7.2) and 33% in simulated body fluid (SBF, pH 7.2) for 72 h. The material SBA@N presented an initial burst release of 13% in simulated intestinal fluid and 32.6% in simulated gastric fluid (SGF, pH 1.2), while about 70% of the drug was released within the next 72 h. Density functional theory (DFT) calculations have also supported the slow drug release from the SBA@3N material. The release mechanism of the drug from the prepared carriers was studied by first-order, second-order, Korsmeyer-Peppas, Hixson-Crowell, and Higuchi kinetic models. The drug release from these carriers follows Fickian diffusion and zero-order kinetics in SGF and SBF, whereas first-order, non-Fickian diffusion, and case-II transport were observed in SIF. Discussion: Based on these findings, the proposed synthesized hybrid materials may be suggested as a potential drug delivery system for anti-cancer drugs such as 5-fluorouracil.

2.
Article in English | MEDLINE | ID: mdl-32046204

ABSTRACT

The sediment pollution caused by different metals has attracted a great deal of attention because of the toxicity, persistence, and bio-accumulation. This study focuses on heavy metals in the hyporheic sediment of the Weihe River, China. Contamination levels of metals were examined by using "geo-accumulation index, enrichment factor, and contamination factor" while ecological risk of metals were determined by "potential ecological risk and risk index." The pollutant accumulation of metals ranked as follows: "manganese (Mn) > chromium (Cr) > zinc (Zn) >copper (Cu) > nickel (Ni) > arsenic (As) > lead (Pb)". The geo-accumulation index identified arsenic as class 1 (uncontaminated to moderate contamination), whereas Cu, Cr, Ni, Zn, Pb, and Mn were classified as class 0 (uncontaminated). According to the enrichment factor, arsenic originated through anthropogenic activities and Cr, Ni, Cu, Zn, and Pb were mainly controlled by natural sources. The contamination factor elucidated that sediments were moderately polluted by (As, Cr, Cu, Zn, Mn, and Pb), whereas Ni slightly contaminated the sediments of the Weihe River. All metals posed a low ecological risk in the study area. The risk index revealed that contribution of arsenic (53.43 %) was higher than half of the total risk.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , China , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Metals, Heavy/toxicity , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...