Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
J Addict Med ; 18(3): 345-347, 2024.
Article in English | MEDLINE | ID: mdl-38329815

ABSTRACT

BACKGROUND: Federal regulations restrict methadone for opioid use disorder (OUD) treatment to licensed opioid treatment programs (OTPs). However, providers in other settings can administer methadone for opioid withdrawal under the "72-hour rule" while linking to further care. Prior work has demonstrated that methadone initiation in a low-barrier bridge clinic is associated with high OTP linkage and 1-month retention rates. We describe 2 other novel applications of the 72-hour rule in which methadone withdrawal management facilitated linkage to inpatient hospitalization and outpatient buprenorphine induction. CASE PRESENTATIONS: Patient 1 was a 46-year-old woman with OUD complicated by serious injection-related infections. Severe opioid withdrawal limited her ability to tolerate emergency department wait times and receive inpatient care. We administered methadone for opioid withdrawal in an outpatient bridge clinic immediately before emergency department referral; this enabled hospital admission for intravenous antibiotics and anticoagulation. Patient 2 was a 36-year-old man with OUD desiring buprenorphine treatment. He had been unable to complete traditional buprenorphine induction without experiencing precipitated withdrawal. Thus, we recommended a low-dose buprenorphine induction overlapping with a full opioid agonist. Given the patient's preference to stop using fentanyl immediately, he received 72 hours of methadone for withdrawal treatment during the induction phase and successfully transitioned to buprenorphine without significant concomitant fentanyl use. CONCLUSION: In addition to facilitating OTP linkage, on-demand 72-hour methadone administration for opioid withdrawal can reduce barriers to acute medical care and buprenorphine treatment.


Subject(s)
Buprenorphine , Methadone , Opiate Substitution Treatment , Opioid-Related Disorders , Humans , Female , Methadone/administration & dosage , Methadone/therapeutic use , Buprenorphine/administration & dosage , Opioid-Related Disorders/drug therapy , Middle Aged , Opiate Substitution Treatment/methods , Male , Adult , Substance Withdrawal Syndrome/drug therapy , Analgesics, Opioid/administration & dosage
2.
Reprod Sci ; 31(5): 1420-1428, 2024 May.
Article in English | MEDLINE | ID: mdl-38294668

ABSTRACT

Oocyte cryopreservation is offered to women of various age groups for both health and social reasons. Oocytes derived from either controlled ovarian stimulation or in vitro maturation (IVM) are cryopreserved via vitrification. As maternal age is a significant determinant of oocyte quality, there is limited data on the age-related susceptibility of oocytes to the vitrification-warming procedure alone or in conjunction with IVM. In the present study, metaphase II oocytes obtained from 2, 6, 9, and 12 month old Swiss albino mice either by superovulation or IVM were used. To understand the association between maternal age and oocyte cryotolerance, oocytes were subjected to vitrification-warming and compared to non vitrified sibling oocytes. Survived oocytes were evaluated for mitochondrial potential, spindle integrity, relative expression of spindle checkpoint protein transcripts, and DNA double-strand breaks. Maturation potential and vitrification-warming survival were significantly affected (p < 0.001 and p < 0.05, respectively) in ovulated oocytes from the advanced age group but not in IVM oocytes. Although vitrification-warming significantly increased spindle abnormalities in ovulated oocytes from advanced maternal age (p < 0.01), no significant changes were observed in IVM oocytes. Furthermore, Bub1 and Mad2 transcript levels were significantly higher in vitrified-warmed IVM oocytes (p < 0.05). In conclusion, advanced maternal age can have a negative impact on the cryosusceptibility of ovulated oocytes but not IVM oocytes in mice.


Subject(s)
Cryopreservation , In Vitro Oocyte Maturation Techniques , Maternal Age , Oocytes , Vitrification , Animals , Oocytes/physiology , Female , Mice , Cryopreservation/methods , Mad2 Proteins/metabolism , Spindle Apparatus/physiology , Spindle Apparatus/metabolism , DNA Breaks, Double-Stranded , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Survival/physiology
3.
Braz. j. biol ; 83: 1-7, 2023. ilus
Article in English | LILACS, VETINDEX | ID: biblio-1468894

ABSTRACT

Staphylococcus aureus is an important foodborne pathogen associated to food intoxication and other multiple infections in human being. Its presence in salted food is a serious issue due to its salt tolerance potential. A study was conducted to analyze the presence of enterotoxins producing drug resistance S. aureus in salted sea fish from Gwadar. Freshly persevered samples (n=50) of salted fish were subjected to analyze the presence of S. aureus using 16S rRNA and Nuc genes primers. The isolates were then evaluated for drug resistance and enterotoxins producing potential using specific primers for MecA (methicillin resistance gene), (SEA) staphylococcal enterotoxin A and (SEB) staphylococcal enterotoxin B genes. Total 13/50 (26%) of the samples were found positive for the presence of S. aureus, preliminary confirmed with biochemical profiling and finally with the help of target genes presence. The isolates were found showing 100% resistant to methicillin, which were molecularly confirmed by the presence of MecA gene present in genome. The isolates 5/13 (38%) were positive for SEA and 3/13 (23%) for SEB genes, whereas 2/13 (15%) were confirmed having both SEA and SEB genes in its genome. It was also confirmed that all the isolates were capable to form biofilm over the glass surfaces. It was concluded that the study confirmed the presence of enterotoxigenic methicillin resistance Staphylococcus aurous (MRSA) in salted fish product, that poses gross food safety concern. Preventive and control measures are necessary to handle this serious food safety concern.


Staphylococcus aureus é um importante patógeno de origem alimentar associado à intoxicação alimentar e outras infecções múltiplas em seres humanos. Sua presença em alimentos salgados é um problema sério devido ao seu potencial de tolerância ao sal. Um estudo foi realizado para analisar a presença de enterotoxinas produtoras de resistência a drogas S. aureus em peixes salgados do mar de Gwadar. Amostras recém-perseveradas (n = 50) de peixes salgados foram submetidas à análise da presença de S. aureus usando os primers dos genes 16S rRNA e Nuc. Os isolados foram então avaliados quanto à resistência a drogas e potencial de produção de enterotoxinas usando primers específicos para os genes MecA (gene de resistência à meticilina), (SEA) enterotoxina A estafilocócica e (SEB) enterotoxina B estafilocócica genes. Um total de 13/50 (26%) das amostras foi considerado positivas para a presença de S. aureus, confirmadas preliminarmente com perfis bioquímicos e finalmente com a ajuda da presença de genes-alvo. Os isolados foram encontrados com 100% de resistência à meticilina, os quais foram confirmados molecularmente pela presença do gene MecA no genoma. Os isolados 5/13 (38%) foram positivos para SEA e 3/13 (23%) para genes SEB, enquanto 2/13 (15%) foram confirmados tendo os genes SEA e SEB em seu genoma. Também foi verificado que todos os isolados foram capazes de formar biofilme sobre as superfícies de vidro. Concluiu-se que o estudo confirmou a presença de Staphylococcus aurous resistente à meticilina enterotoxigênica (MRSA) em produtos de peixe salgado, o que representa uma grande preocupação para a segurança alimentar. Medidas preventivas e de controle são necessárias para lidar com essa grave preocupação com a segurança alimentar.


Subject(s)
Animals , Foodborne Diseases/prevention & control , Food Safety , Fishes/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity
4.
Braz. j. biol ; 832023.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469110

ABSTRACT

Abstract Staphylococcus aureus is an important foodborne pathogen associated to food intoxication and other multiple infections in human being. Its presence in salted food is a serious issue due to its salt tolerance potential. A study was conducted to analyze the presence of enterotoxins producing drug resistance S. aureus in salted sea fish from Gwadar. Freshly persevered samples (n=50) of salted fish were subjected to analyze the presence of S. aureus using 16S rRNA and Nuc genes primers. The isolates were then evaluated for drug resistance and enterotoxins producing potential using specific primers for MecA (methicillin resistance gene), (SEA) staphylococcal enterotoxin A and (SEB) staphylococcal enterotoxin B genes. Total 13/50 (26%) of the samples were found positive for the presence of S. aureus, preliminary confirmed with biochemical profiling and finally with the help of target genes presence. The isolates were found showing 100% resistant to methicillin, which were molecularly confirmed by the presence of MecA gene present in genome. The isolates 5/13 (38%) were positive for SEA and 3/13 (23%) for SEB genes, whereas 2/13 (15%) were confirmed having both SEA and SEB genes in its genome. It was also confirmed that all the isolates were capable to form biofilm over the glass surfaces. It was concluded that the study confirmed the presence of enterotoxigenic methicillin resistance Staphylococcus aurous (MRSA) in salted fish product, that poses gross food safety concern. Preventive and control measures are necessary to handle this serious food safety concern.


Resumo Staphylococcus aureus é um importante patógeno de origem alimentar associado à intoxicação alimentar e outras infecções múltiplas em seres humanos. Sua presença em alimentos salgados é um problema sério devido ao seu potencial de tolerância ao sal. Um estudo foi realizado para analisar a presença de enterotoxinas produtoras de resistência a drogas S. aureus em peixes salgados do mar de Gwadar. Amostras recém-perseveradas (n = 50) de peixes salgados foram submetidas à análise da presença de S. aureus usando os primers dos genes 16S rRNA e Nuc. Os isolados foram então avaliados quanto à resistência a drogas e potencial de produção de enterotoxinas usando primers específicos para os genes MecA (gene de resistência à meticilina), (SEA) enterotoxina A estafilocócica e (SEB) enterotoxina B estafilocócica genes. Um total de 13/50 (26%) das amostras foi considerado positivas para a presença de S. aureus, confirmadas preliminarmente com perfis bioquímicos e finalmente com a ajuda da presença de genes-alvo. Os isolados foram encontrados com 100% de resistência à meticilina, os quais foram confirmados molecularmente pela presença do gene MecA no genoma. Os isolados 5/13 (38%) foram positivos para SEA e 3/13 (23%) para genes SEB, enquanto 2/13 (15%) foram confirmados tendo os genes SEA e SEB em seu genoma. Também foi verificado que todos os isolados foram capazes de formar biofilme sobre as superfícies de vidro. Concluiu-se que o estudo confirmou a presença de Staphylococcus aurous resistente à meticilina enterotoxigênica (MRSA) em produtos de peixe salgado, o que representa uma grande preocupação para a segurança alimentar. Medidas preventivas e de controle são necessárias para lidar com essa grave preocupação com a segurança alimentar.

5.
bioRxiv ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38187764

ABSTRACT

Transmembrane ß-barrels (TMBs) are widely used for single molecule DNA and RNA sequencing and have considerable potential for a broad range of sensing and sequencing applications. Current engineering approaches for nanopore sensors are limited to naturally occurring channels such as CsgG, which have evolved to carry out functions very different from sensing, and hence provide sub-optimal starting points. In contrast, de novo protein design can in principle create an unlimited number of new nanopores with any desired properties. Here we describe a general approach to the design of transmembrane ß-barrel pores with different diameter and pore geometry. NMR and crystallographic characterization shows that the designs are stably folded with structures close to the design models. We report the first examples of de novo designed TMBs with 10, 12 and 14 stranded ß-barrels. The designs have distinct conductances that correlate with their pore diameter, ranging from 110 pS (~0.5 nm pore diameter) to 430 pS (~1.1 nm pore diameter), and can be converted into sensitive small-molecule sensors with high signal to noise ratio. The capability to generate on demand ß-barrel pores of defined geometry opens up fundamentally new opportunities for custom engineering of sequencing and sensing technologies.

6.
Biomed Res Int ; 2022: 1640193, 2022.
Article in English | MEDLINE | ID: mdl-35941980

ABSTRACT

Habb-e-Suranjan (HES), an Unani formulation, has been studied for its anti-inflammatory properties in both in vitro and in vivo experiments. HES is recommended for arthritis, gout, and joint pain. The current endeavor is an attempt to put it to the test and verify its efficacy scientifically. It was tested for DPPH, hydroxyl, and nitric oxide scavenging activities. It was shown that HES had the greatest TAC and FRAC values when compared to catechin and ascorbic acid. HES exhibited DPPH and hydroxyl radical scavenging activity that was dose-dependent. Incubation of sodium nitroprusside solutions in PBS at 25°C for 150 min resulted in the production of nitric oxide. Nitric oxide production was effectively decreased by HES. Anti-inflammatory medications boosted the migration of PMN cells toward the chemoattractant FMLP in an agarose experiment of PMN chemotaxis. In carrageenan-induced rat paw edema, in the HES-treated group, paw thickness was 3.021 ± 0.084 at t = 0, but it showed an increase in paw inflammation after one hour, i.e., 3.195 ± 0.082 cm which again showed a decrease in paw thickness up to 4th hour, i.e., 3.018 ± 0.078, 2.98 ± 0.032, and 2.684 ± 0.061 at t = 2, 3, and 4, respectively. It showed again getting back to the normal thickness of paw at t = 24 hrs, i.e., 3.029 ± 0.118 cm. It is concluded that the formulation is potent enough and can be used effectively for the treatment of inflammation and associated health issues. Moreover, there is much scope to evaluate its effectiveness using different in vitro and in vivo models.


Subject(s)
Nitric Oxide , Plant Extracts , Animals , Anti-Inflammatory Agents/therapeutic use , Carrageenan/adverse effects , Edema/chemically induced , Edema/drug therapy , Inflammation/drug therapy , Plant Extracts/therapeutic use , Rats
7.
Eur J Pharmacol ; 928: 175095, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35728626

ABSTRACT

Snake envenomation leads to the formation of damage-associated molecular patterns (DAMPs), which are mediated by endogenous intracellular molecules. These are recognized by pattern-recognition receptors (PRRs) and can induce sterile inflammation. AIMS: In the present study, we aim at understanding the mechanisms involved in DAMPs induced sterile inflammation to unravel the novel therapeutic strategies for treating snake bites. The potential of benzodiazepinone derivatives to act against snake venom induced inflammation has been explored in the present investigation. MAIN METHODS: Three compounds VA 17, VA 43 and PA 03 were taken from our library of synthetic compounds. Oxidative stress markers such as lipid peroxidation, superoxide and nitric oxide were measured along with the analysis of DAMPs (IL6, HMGB1, vWF, S100b and HSP70). These compounds have been docked using molecular docking against the snake venom PLA2 structure (PDB code: 1OXL). KEY FINDINGS: The compounds have been found to effectively neutralize viper and cobra venoms induced lethal activity both ex vivo and in vivo. The compounds have also neutralized the viper venom induced hemorrhagic, coagulant, anticoagulant reactions as well as inflammation. The fold of protection have always been found to be higher in case of ex vivo than in in vivo. These compounds have neutralized the venom induced DAMPs as exhibited by IL6, HMGB1, vWF, S100b and HSP70. The fold of neutralization is found to be higher in VA 43. SIGNIFICANCE: The identified compounds could be used as potential candidates for developing treatment of snakebites in areas where antiserums are not yet available.


Subject(s)
HMGB1 Protein , Snake Bites , Animals , Antivenins/chemistry , Antivenins/pharmacology , Antivenins/therapeutic use , Inflammation/chemically induced , Inflammation/drug therapy , Interleukin-6 , Molecular Docking Simulation , Snake Bites/drug therapy , Viper Venoms , von Willebrand Factor
8.
Mater Chem Phys ; 282: 125803, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35153357

ABSTRACT

The excellent strategy to mitigate the spread of the COVID-19 pandemic is to inhibit the transmission of the SARS-CoV-2. Since fomites are one of the vital routes of coronaviral transmission, disinfecting of fomites play a pivotal role in curbing its survival on the contaminated surfaces. Available commercial disinfectants cannot keep the contaminated surfaces sanitized all the time. Self-disinfecting ability of Ag-enriched TiO2 nanocoating due to its superb photocatalytic efficiency can effectively reduce infections caused by spread of pathogens at public places. Anatase Ag-TiO2 nanocoatings synthesized by sol-gel process at 0.5, 1.5, and 2.5% enriching concentrations were casted on glass substrates by spin-coating technique and subsequently annealed at 650 °C. The morphological shape, crystallographic structure, light absorbance, photo-luminosity, vibrational modes, and functional groups of Ag-TiO2 nanocoating on glass surface were studied by FE-SEM, GIXRD, UV-Visible, Photoluminescence, Raman, and FTIR spectroscopy. The developed anatase Ag-TiO2 nanocoatings manifested to improve photocatalytic disinfecting performance due to the achieved small crystallite size of 10.5-19.2 nm, diminished band gap energy of 2.56-2.60 eV, elevated surface area of 0.802-1.470 ×105 cm2/g, and enhanced light absorbance. Among the enriched specimens, 0.5% Ag-TiO2 nanocoatings predicted an overall exalted functionality compared to pristine one.

9.
Am J Med Sci ; 363(6): 526-537, 2022 06.
Article in English | MEDLINE | ID: mdl-34995576

ABSTRACT

BACKGROUND: Cervical cancer (CC) is the fourth most common gynecological malignancy globally. This suggests the need for improved markers for prognosis, better understanding of the molecular mechanism, and targets for therapy. The defective exocytosis pathway is proposed as bona fide drivers of carcinogenesis. This study aimed to identify the exocytosis pathway network and its contribution to CC. METHODS: We screened exocytosis genes from the The Cancer Genome Atlas Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (TCGA-CESC) dataset and performed differential expression and methylation, Kaplan-Meier survival, and pathway enrichment analysis. We constructed the protein-protein interaction networks (PPIN), predicted the possible metastatic genes, and identified FDA approved drugs to target the exocytosis network in CC. RESULTS: Integrated bioinformatics analysis identified 245 differentially methylated genes, including 153 hypermethylated and 92 hypomethylated genes. Further, 89 exocytosis pathway genes were differentially expressed, including 60 downregulated and 29 upregulated genes in CC. The overlapping analysis identified 39 genes as methylation regulated genes and showed an inverse correlation between methylation and expression. The HCMDB database identified nine of the identified genes (GRIK5, PTPN6, GAB2, ATP8B4, HTR2A, SPARC, CLEC3B, VWF, and S100A11) were linked with metastasis in CC. Moreover, the Kaplan-Meier survival analysis identified that high expression of PTPN6 and low expression of CLEC3B were significantly linked with poor overall survival (OS) in patients with CC. The KEGG pathway enrichment analysis identified differentially expressed genes that were mainly involved with proteoglycans in cancer, TGF-beta signaling, PI3K-Akt signaling, MAPK signaling pathway, and others. The PPIN identified 89 nodes, 192 edges with VWF, MMP9, THBS1, IGF1, CLU, A2M, IGF2, SPARC, VAMP2, and FIGF as top 10 hub genes. The drug-gene interaction analysis identified 188 FDA approved drugs targeting 32 genes, including 5 drugs that are already in use for treating CC. CONCLUSIONS: In summary, we have identified the exocytosis pathway networks, candidate genes, and novel drugs for better management of CC.


Subject(s)
Uterine Cervical Neoplasms , Biomarkers, Tumor/genetics , Exocytosis , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Phosphatidylinositol 3-Kinases/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
10.
Kathmandu Univ Med J (KUMJ) ; 20(80): 443-447, 2022.
Article in English | MEDLINE | ID: mdl-37795721

ABSTRACT

Background The median artery (transitory artery) represents the forearm's embryonic arterial axis. At 8th week of gestation retreats into a little canal that supplies the median nerve. Later, ulnar and radial arteries take its place. Adults may still have it in either a palmar or an antebrachial pattern. The persistent median arteries are a long, angular arterial that extends to the hand's palmar surface. The median artery only partially recedes in the antebrachial type. Objective To identify the median artery distribution in the adult Nepalese population. Method Twenty-five adult human cadavers' left and right upper limbs undergone to descriptive research. The persistent median artery was exposed according to the Cunningham's Manual of Practical Anatomy. Result The forearm and hand arteries in each of the fifty upper limbs from the twentyfive formalin-embalmed human cadavers were studied. Among fifty upper limbs, persistent median arteries were found in six (twelve percent) of them. One percent of a cadaver's right and left limbs had bilateral persisting median arteries (ante brachial). Persistent median artery of the ante brachial type that arises from the anterior interosseous artery in a right upper limb. Persistent median artery emerging from the posterior interosseous arteries were visible in one right upper limb. Conclusion The study showed persistent median artery of ante brachial type. The posterior interosseus artery is the source of the majority of antebrachial type. A median artery piercing the median nerve was discovered.


Subject(s)
Arm , Forearm , Adult , Humans , Forearm/blood supply , Upper Extremity , Arteries/anatomy & histology , Cadaver
11.
J Ayurveda Integr Med ; 12(4): 579-589, 2021.
Article in English | MEDLINE | ID: mdl-34674920

ABSTRACT

BACKGROUND: Colorectal cancer (CC) is the third most common cancer in the world. Annona reticulata (AR) also known as bullock's heart, is a traditional herb. AR leaf extract was initially investigated for its anti-bacterial, anti-inflammatory, anti-malarial, anti-helminthic, anti-stress, and wound healing properties. Only a few in vitro cancer studies have been conducted on AR. Although few studies have linked AR leaf extract to many cancers, comprehensive studies addressing regulation, biological functions, and molecular mechanisms leading to CC pathogenesis are clearly lacking. OBJECTIVES: The present study aimed to explore the antioxidant and anti-cancer potentials of AR leaf extract in CC. MATERIALS AND METHODS: The MTT assay was used to test the anti-proliferative activity of AR leaf extract in vitro on the HCT116 cell line. Qualitative and quantitative phytochemical characterization was carried out using gas chromatography: mass spectrometry (GC-MS). 1,2-dimethylhydrazine (DMH) was used to establish CC model in female Wistar rats. The acute toxicity of AR leaf extract was tested in accordance with OECD guidelines. Aberrant Crypt Foci (ACF) count, organ index, and hematological estimations were used to screen for in vivo anti-cancer potential. The antioxidant activity of colon homogenate was determined. RESULTS: The alcoholic leaf extract (IC50, 0.55 µg/ml) was found to be more potent than the aqueous extract. Using GC-MS, a total of 108 compounds were quantified in the alcoholic leaf extract. The LD 50 value was found to be safe at a dose of 98.11 mg/kg of body weight. AR alcoholic leaf extract significantly (p < 0.05) decreased ACF count and normalized colon length/weight ratio. AR leaf extract increased RBC, hemoglobin and platelets levels. The AR alcoholic leaf extract reduced the DMH-induced tumors and significantly (p < 0.05) increased the activity of endogenous antioxidant enzymes such as catalase, reduced glutathione, superoxide dismutase, and decreased the lipid peroxidase activity. AR leaf extract reduced the inflammation caused by DMH and helped to repair the colon's damaged muscle layers. CONCLUSION: Based on the findings from the present study, it can be concluded that the alcoholic leaf extract of AR has antioxidant and anti-proliferative properties and can aid in the prevention of CC development and dysplasia caused by DMH.

12.
Braz J Biol ; 83: e247701, 2021.
Article in English | MEDLINE | ID: mdl-34468529

ABSTRACT

Staphylococcus aureus is an important foodborne pathogen associated to food intoxication and other multiple infections in human being. Its presence in salted food is a serious issue due to its salt tolerance potential. A study was conducted to analyze the presence of enterotoxins producing drug resistance S. aureus in salted sea fish from Gwadar. Freshly persevered samples (n=50) of salted fish were subjected to analyze the presence of S. aureus using 16S rRNA and Nuc genes primers. The isolates were then evaluated for drug resistance and enterotoxins producing potential using specific primers for MecA (methicillin resistance gene), (SEA) staphylococcal enterotoxin A and (SEB) staphylococcal enterotoxin B genes. Total 13/50 (26%) of the samples were found positive for the presence of S. aureus, preliminary confirmed with biochemical profiling and finally with the help of target genes presence. The isolates were found showing 100% resistant to methicillin, which were molecularly confirmed by the presence of MecA gene present in genome. The isolates 5/13 (38%) were positive for SEA and 3/13 (23%) for SEB genes, whereas 2/13 (15%) were confirmed having both SEA and SEB genes in its genome. It was also confirmed that all the isolates were capable to form biofilm over the glass surfaces. It was concluded that the study confirmed the presence of enterotoxigenic methicillin resistance Staphylococcus aurous (MRSA) in salted fish product, that poses gross food safety concern. Preventive and control measures are necessary to handle this serious food safety concern.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Fish Products , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , RNA, Ribosomal, 16S , Staphylococcus aureus/genetics
13.
J Genet Eng Biotechnol ; 19(1): 74, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33999298

ABSTRACT

BACKGROUND: The green synthesis strategy of metallic nanoparticles (NPs) has become popular due to being environmentally friendly. Stable silver nanoparticles (AgNPs) have been synthesized by natural products such as starch, soy protein, various extract of leaves, barks, and roots functioning both as reducing and stabilizing agents. Likewise, silk sericin (SS) is a globular protein discarded in the silk factory might be used for NP synthesis. In this research, we focus on the green synthesis and stabilization of AgNPs by SS as well as assessment of their antibacterial activities against some drug-resistant pathogen. RESULTS: SS was extracted from Bombyx mori silkworm cocoons in an aqueous medium. 17 w/w% of dry sericin powder with respect to the cocoon's weight was obtained by freeze-drying. Furthermore, AgNPs conjugated to sericin, i.e., SS-capped silver nanoparticles (SS-AgNPs) were synthesized by easy, cost-effective, and environment-friendly methods. The synthesized SS-AgNPs were characterized by UV-visible spectroscopy, Fourier-transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction measurement. It has been found from the absorbance of UV-visible spectroscopy that a higher percent of SS-AgNPs was obtained at a higher concentration of silver nitrate solution. FTIR-ATR spectra showed that the carboxylate groups obtained from silk sericin act as a reducing agent for the synthesis of silver nanoparticles, while NH2+ and COO- act as a stabilizer of AgNPs. The X-ray diffractogram of SS-AgNPs was quite different from AgNO3 and sericin due to a change in the crystal structure. The diameter of AgNPs was around 20-70 nm observed using TEM. The synthesized SS-AgNPs exhibited strong antibacterial activity against multidrug-resistant pathogens, Escherichia coli and Pseudomonas aeruginosa. Minimal inhibitory/bactericidal concentrations against E. coli and P. aeruginosa were 20µg/mL. CONCLUSIONS: This study encourages the use of Bombyx mori for the ecofriendly synthesis of SS-AgNPs to control multidrug-resistant microorganisms.

14.
Reprod Biol ; 21(1): 100482, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33548740

ABSTRACT

The miR-15a/16-1 cluster is abnormally expressed in cervical cancer (CC) tissues and plays a vital role in cervical carcinogenesis. We aimed to evaluate the miR-15a/16-1 expression in healthy and cancerous cervical tissues, identify the associated networks, and to test its prognostic significance. miR-15a/16-1-MC expressions were analyzed in TCGA-CESC datasets by UALCAN, GEPIA2, and Datasetviewer. miR-15a/16-1 validated targets were extracted from mirTarBase and in silico functional analysis of the target genes were performed using WebGestalt. The interaction networks were constructed by the miRNet, STRING, and NetworkAnalyst tools. The prognostic significance and metastatic potential of the target genes were predicted using UALCAN and HCMDB. The FDA approved drugs to target miR-15a/16-1 and target gene network in CC were performed using DGIdb, STITCH and PanDrugs. TCGA-CESC and GEO data analysis suggested significant overexpression of miR-15a/16-1 in CC samples. The Kaplan-Meier survival analysis showed that miR-15a and its four target genes (BCL2, CCNE1, NUP50, and RBPJ) influence the overall survival of CC patients. Among the 66 differentially expressed target genes, 12 of them are linked to head, neck, or lung metastasis. Functional enrichment analysis predicted the association of this cluster with p53 signaling, human papillomavirus infection, PI3-AKT signaling pathway, and pathways in cancer. Drug-gene interaction analysis showed 52 potential FDA approved drugs to interact with the miR-15a/16-1 target genes. Nine of the 52 drugs are currently used as a chemotherapeutic agent for the treatment of CC patients. The present study shows that miR-15a/16-1 expression can be used as a clinical marker and target for therapy in CC.


Subject(s)
Cervix Uteri/metabolism , Gene Expression Regulation, Neoplastic/physiology , MicroRNAs/metabolism , Uterine Cervical Neoplasms/metabolism , Computer Simulation , Female , Gene Regulatory Networks , Humans , MicroRNAs/genetics , Up-Regulation
15.
Science ; 371(6531)2021 02 19.
Article in English | MEDLINE | ID: mdl-33602829

ABSTRACT

Transmembrane ß-barrel proteins (TMBs) are of great interest for single-molecule analytical technologies because they can spontaneously fold and insert into membranes and form stable pores, but the range of pore properties that can be achieved by repurposing natural TMBs is limited. We leverage the power of de novo computational design coupled with a "hypothesis, design, and test" approach to determine TMB design principles, notably, the importance of negative design to slow ß-sheet assembly. We design new eight-stranded TMBs, with no homology to known TMBs, that insert and fold reversibly into synthetic lipid membranes and have nuclear magnetic resonance and x-ray crystal structures very similar to the computational models. These advances should enable the custom design of pores for a wide range of applications.


Subject(s)
Computer Simulation , Membrane Proteins/chemistry , Models, Molecular , Protein Conformation, beta-Strand , Protein Engineering , Amino Acid Sequence , Crystallography, X-Ray , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers , Magnetic Resonance Spectroscopy , Membranes, Artificial , Micelles , Protein Conformation , Protein Folding , Protein Stability
16.
Clin Dysmorphol ; 30(2): 71-75, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-32925198

ABSTRACT

Feingold syndrome 1 (FGLDS1) is an autosomal dominant malformation syndrome, characterized by skeletal anomalies, microcephaly, facial dysmorphism, gastrointestinal atresias and learning disabilities. Mutations in the MYCN gene are known to be the cause of this syndrome. Congenital absence of the flexor pollicis longus (CAFPL) tendon is a rare hand anomaly. Most cases are sporadic and no genetic variants have been described associated with this abnormality. We describe here a pedigree combining familial CAFPL tendon as a feature of FGLDS1. Molecular analyses of whole exome sequence data in five affected family members spanning three generations of this family revealed a novel mutation in the MYCN gene (c.1171C>T; p.Arg391Cys). Variants in MYCN have not been published in association with isolated or syndromic CAFPL tendon, nor has this been described as a skeletal feature of Feingold syndrome. This report expands on the clinical and molecular spectrum of MYCN-related disorders and highlights the importance of MYCN protein in normal human thumb and foramen development.


Subject(s)
Eyelids/abnormalities , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Limb Deformities, Congenital/diagnosis , Limb Deformities, Congenital/genetics , Microcephaly/diagnosis , Microcephaly/genetics , Mutation , N-Myc Proto-Oncogene Protein/genetics , Tendons/abnormalities , Thumb/abnormalities , Tracheoesophageal Fistula/diagnosis , Tracheoesophageal Fistula/genetics , Adult , Aged , Child , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Models, Molecular , N-Myc Proto-Oncogene Protein/chemistry , Pedigree , Phenotype , Structure-Activity Relationship , Exome Sequencing
17.
Nat Struct Mol Biol ; 27(3): 249-259, 2020 03.
Article in English | MEDLINE | ID: mdl-32157247

ABSTRACT

Aggregation of human α-synuclein (αSyn) is linked to Parkinson's disease (PD) pathology. The central region of the αSyn sequence contains the non-amyloid ß-component (NAC) crucial for aggregation. However, how NAC flanking regions modulate αSyn aggregation remains unclear. Using bioinformatics, mutation and NMR, we identify a 7-residue sequence, named P1 (residues 36-42), that controls αSyn aggregation. Deletion or substitution of this 'master controller' prevents aggregation at pH 7.5 in vitro. At lower pH, P1 synergises with a sequence containing the preNAC region (P2, residues 45-57) to prevent aggregation. Deleting P1 (ΔP1) or both P1 and P2 (ΔΔ) also prevents age-dependent αSyn aggregation and toxicity in C. elegans models and prevents αSyn-mediated vesicle fusion by altering the conformational properties of the protein when lipid bound. The results highlight the importance of a master-controller sequence motif that controls both αSyn aggregation and function-a region that could be targeted to prevent aggregation in disease.


Subject(s)
Neurons/chemistry , Parkinson Disease/metabolism , Protein Aggregates , alpha-Synuclein/chemistry , Amino Acid Sequence , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Caenorhabditis elegans , Cloning, Molecular , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Hydrogen-Ion Concentration , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Neurons/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Phosphatidylserines/chemistry , Protein Multimerization , Proteolipids/chemistry , Proteolipids/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
18.
Clin Transl Oncol ; 22(9): 1591-1602, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32056128

ABSTRACT

BACKGROUND: Tumor metastasis is a terrifying characteristic of cancer. Numerous studies have been conducted to overcome metastasis by targeting tumor microenvironment (TME). However, due to complexity of tumor microenvironment, it remained difficult for accurate targeting. Dwarf-lillytruf tuber monomer-13 (DT-13) possess good potential against TME. OBJECTIVE: As TME is supportive for tumor metastasis, alternatively it is a challenging for therapeutic intervention. In our present study, we explored molecular mechanism through which TME induced cell migration and how DT-13 interferes in this mechanism. METHODS: We used a novel model of co-culture system which is eventually developed in our lab. Tumor cells were co-cultured with hypoxia induced cancer-associated fibroblasts (CAF) or with chemically induced cancer-associated adipocytes (CAA). The effect of hypoxia in conditioned medium for CAF was assessed through expression of α-SMA and HIF by western blotting while oil red staining was done to assess the successful chemical induction for adipocytes (CAA), the effect of TME through conditioned medium on cell migration was analyzed by trans-well cell migration, and cell motility (wound healing) analyses. The expression changes in cellular proteins were assessed through western blotting and immunofluorescent studies. RESULTS AND CONCLUSION: Our results showed that tumor microenvironment has a direct role in promoting breast cancer cell migration by stromal cells; moreover, we found that DT-13 restricts this TME regulated cell migration via targeting stromal cells in vitro. Additionally we also found that DT-13 targets NMII-A for its effect on breast cancer cell migration for the regulation of stromal cells in TME.


Subject(s)
Breast Neoplasms/drug therapy , Myosin Heavy Chains/metabolism , Saponins/pharmacology , Animals , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Cell Movement/immunology , Female , Humans , Liriope Plant/chemistry , Mice , Myosin Heavy Chains/genetics , Signal Transduction , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
19.
Malays Orthop J ; 14(3): 151-154, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33403076

ABSTRACT

INTRODUCTION: Fluorosis has been associated with an increased risk of degenerative changes in the knee. Multiple studies have found an association between arthritis and elevated fluoride levels. We aim to delineate if elevated fluoride level has any direct correlation with the degree of radiological grading and clinical symptoms in knee arthritis. MATERIALS AND METHODS: A cross-sectional study of 80 knee arthritis patients was conducted from February 2017 to April 2018. Serum fluoride levels were measured and patient's pain scores, WOMAC scores and radiological grading were correlated with the elevated fluoride levels. RESULTS: In our study, 30 out of 80 patients had increased serum fluoride level. Statistically significant differences were noted in VAS score, WOMAC score and Kellgren and Lawrence radiological grades between patients with normal serum fluoride level and those with elevated fluoride level. CONCLUSION: There is an increased risk of knee arthritis in patients with elevated blood fluoride levels and patients with increased fluoride levels are associated with more severe symptoms and radiographic disease.

20.
Article in English | WPRIM (Western Pacific) | ID: wpr-843022

ABSTRACT

@#Introduction: Fluorosis has been associated with an increased risk of degenerative changes in the knee. Multiple studies have found an association between arthritis and elevated fluoride levels. We aim to delineate if elevated fluoride level has any direct correlation with the degree of radiological grading and clinical symptoms in knee arthritis. Materials and Methods: A cross-sectional study of 80 knee arthritis patients was conducted from February 2017 to April 2018. Serum fluoride levels were measured and patient’s pain scores, WOMAC scores and radiological grading were correlated with the elevated fluoride levels. Results: In our study, 30 out of 80 patients had increased serum fluoride level. Statistically significant differences were noted in VAS score, WOMAC score and Kellgren and Lawrence radiological grades between patients with normal serum fluoride level and those with elevated fluoride level. Conclusion: There is an increased risk of knee arthritis in patients with elevated blood fluoride levels and patients with increased fluoride levels are associated with more severe symptoms and radiographic disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...