Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 8(6)2017 11 21.
Article in English | MEDLINE | ID: mdl-29162712

ABSTRACT

Human papillomavirus (HPV) genomes are replicated and maintained as extrachromosomal plasmids during persistent infection. The viral E2 proteins are thought to promote stable maintenance replication by tethering the viral DNA to host chromatin. However, this has been very difficult to prove genetically, as the E2 protein is involved in transcriptional regulation and initiation of replication, as well as its assumed role in genome maintenance. This makes mutational analysis of viral trans factors and cis elements in the background of the viral genome problematic and difficult to interpret. To circumvent this problem, we have developed a complementation assay in which the complete wild-type HPV18 genome is transfected into primary human keratinocytes along with subgenomic or mutated replicons that contain the minimal replication origin. The wild-type genome provides the E1 and E2 proteins in trans, allowing us to determine additional cis elements that are required for long-term replication and partitioning of the replicon. We found that, in addition to the core replication origin (and the three E2 binding sites located therein), additional sequences from the transcriptional enhancer portion of the URR (upstream regulatory region) are required in cis for long-term genome replication.IMPORTANCE Human papillomaviruses infect cutaneous and mucosal epithelial cells of the host, and this results in very-long-lived, persistent infection. The viral genomes are small, circular, double-stranded DNA molecules that replicate extrachromosomally in concert with cellular DNA. This replication strategy requires that the virus has a robust mechanism to partition and retain the viral genomes in dividing cells. This has been difficult to study, because viral transcription, replication, and partitioning are regulated by the same viral proteins and involve overlapping elements in the viral genome. We developed a complementation assay that allows us to separate these functions and define the elements required for long-term replication and stable maintenance replication of the HPV genome. This has important implications, as disruption of viral maintenance replication can eliminate viral genomes from infected cells, thus curing persistent HPV infection.


Subject(s)
DNA, Viral/genetics , Genome, Viral , Papillomaviridae/genetics , Transcription Factors/genetics , Virus Replication/genetics , Binding Sites , DNA Replication , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Viral , Genetic Complementation Test/methods , Humans , Keratinocytes/virology , Mutation , Oncogene Proteins, Viral/genetics , Regulatory Sequences, Nucleic Acid , Viral Proteins/metabolism
2.
J Virol ; 85(19): 9984-97, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21752901

ABSTRACT

The human papillomavirus (HPV) type 16 E1^E4 (16E1^E4) protein is expressed in the middle to upper layers of infected epithelium and has several roles within the virus life cycle. It is apparent that within the epithelium there are multiple species of 16E1^E4 that differ in length and/or degree of phosphorylation and that some or all of these can associate with the cellular keratin networks, leading to network disruption. We show here that the cellular cysteine protease calpain cleaves the 16E1^E4 protein after amino acid 17 to generate species that lack the N terminus. These C-terminal fragments are able to multimerize and form amyloid-like fibers. This can lead to accumulation of 16E1^E4 and disruption of the normal dynamics of the keratin networks. The cleavage of E1^E4 proteins by calpain may be a common strategy used by α-group viruses, since we show that cleavage of type 18 E1^E4 in raft culture is also dependent on calpain. Interestingly, the cleavage of 16E1^E4 by calpain appears to be highly regulated as differentiation of HPV genome-containing cells by methylcellulose is insufficient to induce cleavage. We hypothesize that this is important since it ensures that the formation of the amyloid fibers is not prematurely triggered in the lower layers and is restricted to the upper layers, where calpain is active and where disruption of the keratin networks may aid virus release.


Subject(s)
Amyloid/metabolism , Calpain/metabolism , Host-Pathogen Interactions , Human papillomavirus 16/growth & development , Keratins/metabolism , Oncogene Proteins, Fusion/metabolism , Protein Multimerization , Viral Proteins/metabolism , Humans
3.
Virology ; 394(2): 266-75, 2009 Nov 25.
Article in English | MEDLINE | ID: mdl-19783272

ABSTRACT

The E4 (also called E1--E4) and E2 proteins of human papillomavirus type 16 are thought to be expressed within the same cells of a lesion, and their open reading frames overlap, suggesting that they may have a functional relationship. We have examined the effect of co-expression of these two proteins and found that each enhances the level of the other. We also identified the N-terminus of E2 as the first example of a viral protein that directly binds the HPV16 E1--E4 protein. This appears to result in the E2 becoming less soluble and promotes its relocation from the nucleus to the cytoplasm. In addition, the turnover of the E2 protein is decreased in the presence of E1--E4. All this raises the possibility that E1--E4 acts to influence E2 activity by varying the amount of available E2 in the cell.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Human papillomavirus 16/metabolism , Oncogene Proteins, Fusion/chemistry , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Viral/chemistry , Oncogene Proteins, Viral/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Amino Acid Sequence , Base Sequence , Cell Line , DNA Primers/genetics , DNA, Viral/genetics , DNA-Binding Proteins/genetics , Escherichia coli/genetics , Human papillomavirus 16/genetics , Humans , Molecular Sequence Data , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Viral/genetics , Protein Interaction Domains and Motifs , Protein Stability , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transfection , Viral Proteins/genetics
4.
J Virol ; 82(16): 8196-203, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18562538

ABSTRACT

The abundant human papillomavirus (HPV) type 16 E4 protein exists as two distinct structural forms in differentiating epithelial cells. Monomeric full-length 16E1--E4 contains a limited tertiary fold constrained by the N and C termini. N-terminal deletions facilitate the assembly of E1--E4 into amyloid-like fibrils, which bind to thioflavin T. The C-terminal region is highly amyloidogenic, and its deletion abolishes amyloid staining and prevents E1--E4 accumulation. Amyloid-imaging probes can detect 16E1--E4 in biopsy material, as well as 18E1--E4 and 33E1--E4 in monolayer cells, indicating structural conservation. Our results suggest a role for fibril formation in facilitating the accumulation of E1--E4 during HPV infection.


Subject(s)
Human papillomavirus 16/metabolism , Amino Acid Sequence , Animals , Biopsy , COS Cells , Chlorocebus aethiops , Gene Deletion , Humans , Molecular Sequence Data , Protein Conformation , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...