Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Complement Med Ther ; 24(1): 131, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521924

ABSTRACT

BACKGROUND: Tumor necrosis factor-alpha (TNF-α) is a critical pro-inflammatory cytokine, and its abnormal production is associated with several immune mediated inflammatory diseases (IMID). Biological anti-TNF-α therapy includes treatment with monoclonal antibodies such as infliximab which have proven successful and are well-tolerated in most patients. Unfortunately, some patients may not respond to therapy (primary non-responders) or may lose sensitivity to the biological agent over time (early and late secondary non-responders). Natural products can reduce inflammation and act synergistically with small molecules or biologics, although evidence remains limited. This study aimed to investigate whether complementary and alternative medicine (CAM) could play a role in infliximab non-responders. Reportedly, cinnamon can help manage chronic inflammatory conditions owing to its anti-inflammatory properties. METHODS: We studied the synergistic effects of cinnamon and infliximab in vitro using a two-step approach. First, we investigated whether cinnamon and infliximab act synergistically. Second, we selected conditions that supported statistically significant synergy with infliximab and studied the mRNA expression of several genes involved in non-response to infliximab. We used aqueous cinnamon extract (aCE) from Cinnamomum cassia, Cinnamomum zeylanicum, and Cinnamomum loureiroi and bioactive trans-cinnamaldehyde (TCA), cinnamic acid (CA), and eugenol to study the synergy between infliximab and aCE/bioactive compounds using bioassays in fibroblast (L929) and monocytic (U937) cell lines, followed by qPCR for molecular-level insights. TCA, C. cassia aCE, and C. zeylanicum aCE demonstrated a dose-dependent synergistic effect with infliximab. Moreover, we saw differential gene expression for adhesion molecules, apoptotic factors, signaling molecules, and matrix remodelers in presence and absence of aCE/bioactives. RESULTS: CAM supplementation was most effective with C. cassia aCE, where a synergistic effect was observed for all the tested genes specifically for MMP-1, BcL-xL, Bax and JAK2, followed by TCA, which affected most of the tested genes except TLR-2, MMP1, MMP3, TIMP-1, and BAX, and C. zeylanicum aCE, which did not affect ICAM-1, VCAM-1, TLR-2, TLR-4, MMP1, MMP3, TIMP-1, and STAT3. CONCLUSION: In conclusion, cinnamon acted synergistically with infliximab to mitigate inflammation when used as an extract. Purified bioactive TCA also showed synergistic activity. Thus, aCE, or cinnamon bioactive may be used as a CAM to improve patients' quality of life.


Subject(s)
Complementary Therapies , Tumor Necrosis Factor-alpha , Humans , Cinnamomum zeylanicum , Infliximab/pharmacology , Matrix Metalloproteinase 1 , Matrix Metalloproteinase 3 , Tissue Inhibitor of Metalloproteinase-1 , Tumor Necrosis Factor Inhibitors , Toll-Like Receptor 2 , Quality of Life , bcl-2-Associated X Protein , Plant Extracts/pharmacology , Inflammation
2.
Article in English | MEDLINE | ID: mdl-38375835

ABSTRACT

Bacillus clausii is a commercial spore probiotic known to treat multiple diseases. An increased interest in exploring the nutraceutical and probiotic properties of various microorganisms has made researchers explore more about these bacteria. The current trends in the healthcare industry are majorly focused on devising new therapies to avoid drug and pathogen resistance in patients. Antimicrobial peptides have been considered a source of antibiotics for a long time. Still, getting new therapies into the market is a big challenge. Members of the genus Bacillus have been reported to have a broad spectrum of antimicrobial peptides. One of the least explored species under this genus is Bacillus clausii, concerning peptide drug therapy. The applications of Bacillus clausii in treating or preventing gut dysbiosis and respiratory infections have been largely supported in the past two decades. Yet research is lacking in explaining the pathways at molecular levels in targeting pathogens. In this mini-review, we are going to summarise the research that has been reported so far about peptide extraction from Bacillus clausii, their mode of action and advantages to mankind, and the challenges lying in the isolation of peptides.

3.
Nutrients ; 15(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37513529

ABSTRACT

Apitherapy (using bee products) has gained broad recognition in cancer therapeutics globally. Honeybee venom has a broad range of biological potential, and its utilization is rapidly emerging in apitherapy. Bee products have significant potential to strengthen the immune system and improve human health. Thus, this review is targeted toward recapitulating the chemo-preventive potential of melittin (MEL), which constitutes a substantial portion of honeybee venom. Honeybee venom (apitoxin) is produced in the venom gland of the honeybee abdomen, and adult bees utilize it as a primary colony defense mechanism. Apitoxin comprises numerous biologically active compounds, including peptides, enzymes, amines, amino acids, phospholipids, minerals, carbohydrates, and volatile components. We are mainly focused on exploring the potential of melittin (a peptide component) of bee venom that has shown promising potential in the treatment of several human cancers, including breast, stomach, lung, prostate, ovary, kidney, colon, gastric, esophageal, cervical cancers, melanoma, osteosarcoma, and hepatocellular carcinoma. This review has summarized all potential studies related to the anticancerous efficacy of melittin (apitoxin), its formulations, conjugates, and nano-formulations against several human carcinomas, which would further pave the way for future researchers in developing potent drugs for cancer management.


Subject(s)
Bee Venoms , Bone Neoplasms , Carcinoma, Hepatocellular , Liver Neoplasms , Male , Humans , Bees , Animals , Bee Venoms/pharmacology , Bee Venoms/therapeutic use , Melitten/pharmacology , Melitten/therapeutic use , Peptides
4.
J Microbiol Biotechnol ; 20(11): 1597-602, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21124068

ABSTRACT

Chitinase is one of the most important mycolytic enzymes with industrial significance. This enzyme is produced by a number of organisms including bacteria. In this study we describe optimization of media components with increased production of chitinase for selected bacteria Stenotrophomonas maltophilia isolated from the soil. Different components of the defined media responsible for influencing chitinase secretion by the bacterial isolate were screened using Plackett-Burman experimental design and were further optimized by Box-Behnken factorial design of response surface methodology (RSM) in liquid culture. Maximum chitinase production was predicted in medium containing chitin 4.94 g/l, maltose 5.56 g/l, yeast extract 0.62 g/l, KH2PO4 1.33 g/l and MgSO4.7H2O 0.65 g/l using Response surface plots and point prediction tool of DESIGN EXPERT 7.1.6 (Statease, USA) software.


Subject(s)
Bacterial Proteins/metabolism , Chitinases/metabolism , Industrial Microbiology/methods , Stenotrophomonas maltophilia/enzymology , Bacterial Proteins/genetics , Chitinases/genetics , Culture Media/chemistry , Culture Media/metabolism , Research Design , Stenotrophomonas maltophilia/chemistry , Stenotrophomonas maltophilia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...