Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1235889, 2023.
Article in English | MEDLINE | ID: mdl-37818354

ABSTRACT

Lung transplantation is the major surgical procedure, which restores normal lung functioning and provides years of life for patients suffering from major lung diseases. Lung transplant recipients are at high risk of primary graft dysfunction, and chronic lung allograft dysfunction (CLAD) in the form of bronchiolitis obliterative syndrome (BOS). Regulatory T cell (Treg) suppresses effector cells and clinical studies have demonstrated that Treg levels are altered in transplanted lung during BOS progression as compared to normal lung. Here, we discuss levels of Tregs/FOXP3 gene expression as a crucial prognostic biomarker of lung functions during CLAD progression in clinical lung transplant recipients. The review will also discuss Treg mediated immune tolerance, tissue repair, and therapeutic strategies for achieving in-vivo Treg expansion, which will be a potential therapeutic option to reduce inflammation-mediated graft injuries, taper the toxic side effects of ongoing immunosuppressants, and improve lung transplant survival rates.


Subject(s)
Bronchiolitis Obliterans , Lung Transplantation , Humans , T-Lymphocytes, Regulatory , Bronchiolitis Obliterans/etiology , Prognosis , Graft Rejection , Lung Transplantation/adverse effects
2.
Pharmacol Res ; 178: 106147, 2022 04.
Article in English | MEDLINE | ID: mdl-35227891

ABSTRACT

CTLA4-Ig is a potent costimulatory blocker that inhibits T cell activation during alloimmune inflammation and increases graft survival and function. CTLA4-Ig-mediated immunosuppression has been demonstrated to support transplant function in various clinical trials and preclinical settings, but its effects on the balance between regulatory T cells (Tregs) and effector T cells (Teffs), as well as complement activation, are less well investigated. In the present study, we proposed to investigate the effects of CTLA4-Ig mediated immunosuppression on the phase of immunotolerance and the subsequent graft microvascular and epithelial repair during the progression of subepithelial fibrosis in a mouse model of orthotopic trachea transplantation. Briefly, CTLA4-Ig treated allografts (2 mg/kg, I.P.), untreated allografts, and syngrafts were serially monitored for peripheral FOXP3+ Tregs, antibody-mediated complement activation (C3d and C4d), tissue oxygenation, donor-recipient microvascular blood flow, and subsequent tissue remodeling following transplantation. Our data demonstrate that CTLA4-Ig mediated immunosuppression significantly results in late increases in both peripheral CD4+/CD8+ FOXP3+ Tregs and serum IL-10, but prevents the microvascular deposition of IgG, complement factor C3d, and epithelial C4d respectively, which proportionally improved blood flow and tissue oxygenation in the graft and, thus, promotes graft repair. Also, it restored the airway lumen, epithelium, and prevented the progression of subepithelial collagen deposition up to 90 days after transplantation. This study demonstrates that CTLA4-Ig-mediated immunosuppression potentially modulates both effector response and a late surge of regulatory activity to preserve graft microvasculature and rescue allograft from sustained hypoxia and ischemia and thereby limits subepithelial fibrosis.


Subject(s)
CTLA-4 Antigen , Graft Rejection , Graft Survival , Abatacept/pharmacology , Abatacept/therapeutic use , Animals , CTLA-4 Antigen/administration & dosage , CTLA-4 Antigen/immunology , Fibrosis , Forkhead Transcription Factors , Graft Rejection/immunology , Graft Rejection/prevention & control , Graft Survival/immunology , Immunosuppression Therapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/immunology , Trachea/transplantation
3.
Int J Mol Sci ; 23(3)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35163192

ABSTRACT

Interleukin-10 (IL-10) is a vital regulatory cytokine, which plays a constructive role in maintaining immune tolerance during an alloimmune inflammation. Our previous study highlighted that IL-10 mediated immunosuppression established the immune tolerance phase and thereby modulated both microvascular and epithelial integrity, which affected inflammation-associated graft malfunctioning and sub-epithelial fibrosis in rejecting allografts. Here, we further investigated the reparative effects of IL-10 on microvasculature and epithelium in a mouse model of airway transplantation. To investigate the IL-10 mediated microvascular and epithelial repair, we depleted and reconstituted IL-10, and monitored graft microvasculature, airway epithelium, and associated repair proteins. Our data demonstrated that both untreated control allografts and IL-10 (-) allografts showed a significant early (d6) increase in microvascular leakiness, drop-in tissue oxygenation, blood perfusion, and denuded airway epithelium, which is associated with loss of adhesion protein Fascin-1 and ß-catenin on vascular endothelial cells at d10 post-transplantation. However, IL-10 (+) promotes early microvascular and airway epithelial repair, and a proportional increase in endothelial Fascin-1, and ß-catenin at d10 post-transplantation. Moreover, airway epithelial cells also express a significantly higher expression of FOXJ1 and ß-catenin in syngrafts and IL-10 (+) allografts as compared to IL-10 (-) and untreated controls at d10 post-transplantation. Collectively, these findings demonstrated that IL-10 mediated microvascular and epithelial changes are associated with the expression of FOXJ1, ß-catenin, and Fascin-1 proteins on the airway epithelial and vascular endothelial cells, respectively. These findings establish a potential reparative modulation of IL-10 associated microvascular and epithelial repair, which could provide a vital therapeutic strategy to facilitate graft repair in clinical settings.


Subject(s)
Allografts/metabolism , Graft Rejection/immunology , Interleukin-10/metabolism , Animals , Endothelial Cells/immunology , Epithelial Cells/immunology , Epithelium/immunology , Graft Survival/physiology , Immune Tolerance , Immunosuppression Therapy , Interleukin-10/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microvessels/immunology , Microvessels/physiology , T-Lymphocytes, Regulatory/immunology , Transplantation, Homologous/methods
4.
Int Immunopharmacol ; 106: 108621, 2022 May.
Article in English | MEDLINE | ID: mdl-35189469

ABSTRACT

Immunometabolism is a therapeutic strategy to tune immune cells through metabolic reprogramming, which allows immune cells to be differentiated according to their energy requirements. Recent therapeutic strategies targeting immunometabolism suggest that intracellular metabolic reprogramming controls T cell activation, proliferation, and differentiation into effector (Teff) or regulatory (Treg) cells. Immunometabolism is being studied for the treatment of inflammatory diseases, including those associated with solid organ transplantation (SOT). Here, we review immunometabolic regulation of immune cells, with a particular focus on Treg metabolic regulation and liver kinase B1 (LKB1) signaling, which stabilize Tregs and prevent inflammation-associated tissue injuries. All in all, here we discussed how targeting T cell immunometabolism modulates Teff and Treg-mediated immune responses, which can be used to boost Treg differentiation, stability, and ultimately favor immunotolerance in clinical transplants.


Subject(s)
Immunotherapy , T-Lymphocytes, Regulatory , Cell Differentiation , Lymphocyte Activation , Signal Transduction
5.
Cells ; 10(5)2021 05 19.
Article in English | MEDLINE | ID: mdl-34069395

ABSTRACT

Interleukin-10 plays a vital role in maintaining peripheral immunotolerance and favors a regulatory immune milieu through the suppression of T effector cells. Inflammation-induced microvascular loss has been associated with airway epithelial injury, which is a key pathological source of graft malfunctioning and subepithelial fibrosis in rejecting allografts. The regulatory immune phase maneuvers alloimmune inflammation through various regulatory modulators, and thereby promotes graft microvascular repair and suppresses the progression of fibrosis after transplantation. The present study was designed to investigate the therapeutic impact of IL-10 on immunotolerance, in particular, the reparative microenvironment, which negates airway epithelial injury, and fibrosis in a mouse model of airway graft rejection. Here, we depleted and reconstituted IL-10, and serially monitored the phase of immunotolerance, graft microvasculature, inflammatory cytokines, airway epithelium, and subepithelial collagen in rejecting airway transplants. We demonstrated that the IL-10 depletion suppresses FOXP3+ Tregs, tumor necrosis factor-inducible gene 6 protein (TSG-6), graft microvasculature, and establishes a pro-inflammatory phase, which augments airway epithelial injury and subepithelial collagen deposition while the IL-10 reconstitution facilitates FOXP3+ Tregs, TSG-6 deposition, graft microvasculature, and thereby favors airway epithelial repair and subepithelial collagen suppression. These findings establish a potential reparative modulation of IL-10-associated immunotolerance on microvascular, epithelial, and fibrotic remodeling, which could provide a vital therapeutic option to rescue rejecting transplants in clinical settings.


Subject(s)
Graft Rejection/metabolism , Interleukin-10/metabolism , Re-Epithelialization , Respiratory Mucosa/metabolism , Trachea/transplantation , Animals , Disease Models, Animal , Fibrosis , Graft Rejection/immunology , Graft Rejection/pathology , Graft Survival , Inflammation Mediators/metabolism , Interleukin-10/genetics , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Time Factors , Trachea/immunology , Trachea/metabolism , Trachea/pathology , Transplantation Tolerance
6.
Sci Rep ; 11(1): 8158, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33854073

ABSTRACT

Otoliths are commonly used to discriminate between fish stocks, through both elemental composition and otolith shape. Typical studies also have a large number of elemental compositions and shape measures relative to the number of otolith samples, with these measures exhibiting strong mean-variance relationships. These properties make otolith composition and shape data highly suitable for use within a multivariate generalised linear model (MGLM) framework, yet MGLMs have never been applied to otolith data. Here we apply both a traditional distance based permutational multivariate analysis of variance (PERMANOVA) and MGLMs to a case study of striped snakehead (Channa striata) in India. We also introduce the Tweedie and gamma distributions as suitable error structures for the MGLMs, drawing similarities to the properties of Biomass data. We demonstrate that otolith elemental data and combined otolith elemental and shape data violate the assumption of homogeneity of variance of PERMANOVA and may give misleading results, while the assumptions of the MGLM with Tweedie and gamma distributions are shown to be satisfied and are appropriate for both otolith shape and elemental composition data. Consistent differences between three groups of C. striata were identified using otolith shape, otolith chemistry and a combined otolith shape and chemistry dataset. This suggests that future research should be conducted into whether there are demographic differences between these groups which may influence management considerations. The MGLM method is widely applicable and could be applied to any multivariate otolith shape or elemental composition dataset.

7.
J Transl Med ; 18(1): 456, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33267824

ABSTRACT

Asthma is an inflammatory disease of the lung airway network, which is initiated and perpetuated by allergen-specific CD4+ T cells, IgE antibodies, and a massive release of Th2 cytokines. The most common clinical manifestations of asthma progression include airway inflammation, pathological airway tissue and microvascular remodeling, which leads to airway hyperresponsiveness (AHR), and reversible airway obstruction. In addition to inflammatory cells, a tiny population of Regulatory T cells (Tregs) control immune homeostasis, suppress allergic responses, and participate in the resolution of inflammation-associated tissue injuries. Preclinical and clinical studies have demonstrated a tremendous therapeutic potential of Tregs in allergic airway disease, which plays a crucial role in immunosuppression, and rejuvenation of inflamed airways. These findings supported to harness the immunotherapeutic potential of Tregs to suppress airway inflammation and airway microvascular reestablishment during the progression of the asthma disease. This review addresses the therapeutic impact of Tregs and how Treg mediated immunomodulation plays a vital role in subduing the development of airway inflammation, and associated airway remodeling during the onset of disease.


Subject(s)
Asthma , Respiratory Hypersensitivity , Allergens , Animals , Asthma/therapy , Cytokines , Disease Models, Animal , Humans , Immunoglobulin E , Immunomodulation , T-Lymphocytes, Regulatory , Th2 Cells
8.
Infect Agent Cancer ; 15: 63, 2020.
Article in English | MEDLINE | ID: mdl-33101456

ABSTRACT

BACKGROUND: Schistosoma haematobium, the helminth causing urogenital schistosomiasis, is a known bladder carcinogen. Despite the causal link between S. haematobium and bladder cancer, the underlying mechanisms are poorly understood. S. haematobium oviposition in the bladder is associated with angiogenesis and urothelial hyperplasia. These changes may be pre-carcinogenic events in the bladder. We hypothesized that the Interleukin-4-inducing principle of Schistosoma mansoni eggs (IPSE), an S. haematobium egg-secreted "infiltrin" protein that enters host cell nuclei to alter cellular activity, is sufficient to induce angiogenesis and urothelial hyperplasia. Methods: Mouse bladders injected with S. haematobium eggs were analyzed via microscopy for angiogenesis and urothelial hyperplasia. Endothelial and urothelial cell lines were incubated with recombinant IPSE protein or an IPSE mutant protein that lacks the native nuclear localization sequence (NLS-) and proliferation measured using CFSE staining and real-time monitoring of cell growth. IPSE's effects on urothelial cell cycle status was assayed through propidium iodide staining. Endothelial and urothelial cell uptake of fluorophore-labeled IPSE was measured. Findings: Injection of S. haematobium eggs into the bladder triggers angiogenesis, enhances leakiness of bladder blood vessels, and drives urothelial hyperplasia. Wild type IPSE, but not NLS-, increases proliferation of endothelial and urothelial cells and skews urothelial cells towards S phase. Finally, IPSE is internalized by both endothelial and urothelial cells. Interpretation: IPSE drives endothelial and urothelial proliferation, which may depend on internalization of the molecule. The urothelial effects of IPSE depend upon its NLS. Thus, IPSE is a candidate pro-carcinogenic molecule of S. haematobium. SUMMARY: Schistosoma haematobium acts as a bladder carcinogen through unclear mechanisms. The S. haematobium homolog of IPSE, a secreted schistosome egg immunomodulatory molecule, enhances angiogenesis and urothelial proliferation, hallmarks of pre-carcinogenesis, suggesting IPSE is a key pro-oncogenic molecule of S. haematobium.

9.
J Transl Med ; 18(1): 147, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32234039

ABSTRACT

BACKGROUND: Complement Regulatory Proteins (CRPs), especially CD55 primarily negate complement factor 3-mediated injuries and maintain tissue homeostasis during complement cascade activation. Complement activation and regulation during alloimmune inflammation contribute to allograft injury and therefore we proposed to investigate a crucial pathological link between vascular expression of CD55, active-C3, T cell immunity and associated microvascular tissue injuries during allograft rejection. METHODS: Balb/c→C57BL/6 allografts were examined for microvascular deposition of CD55, C3d, T cells, and associated tissue microvascular impairments during rejection in mouse orthotopic tracheal transplantation. RESULTS: Our findings demonstrated that hypoxia-induced early activation of HIF-1α favors a cell-mediated inflammation (CD4+, CD8+, and associated proinflammatory cytokines, IL-2 and TNF-α), which proportionally triggers the downregulation of CRP-CD55, and thereby augments the uncontrolled release of active-C3, and Caspase-3 deposition on CD31+ graft vascular endothelial cells. These molecular changes are pathologically associated with microvascular deterioration (low tissue O2 and Blood flow) and subsequent airway epithelial injuries of rejecting allografts as compared to non-rejecting syngrafts. CONCLUSION: Together, these findings establish a pathological correlation between complement dysregulation, T cell immunity, and microvascular associated injuries during alloimmune inflammation in transplantation.


Subject(s)
Endothelial Cells , Graft Rejection , Animals , Hypoxia , Mice , Mice, Inbred C57BL , Trachea
10.
Stem Cell Res Ther ; 10(1): 290, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31547869

ABSTRACT

BACKGROUND: Lung transplantation is a life-saving surgical replacement of diseased lungs in patients with end-stage respiratory malfunctions. Despite remarkable short-term recovery, long-term lung survival continues to face several major challenges, including chronic rejection and severe toxic side effects due to global immunosuppression. Stem cell-based immunotherapy has been recognized as a crucial immunoregulatory regimen in various preclinical and clinical studies. Despite initial therapeutic outcomes, conventional stem cells face key limitations. The novel Cymerus™ manufacturing facilitates production of a virtually limitless supply of consistent human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells, which could play a key role in selective immunosuppression and graft repair during rejection. METHODS: Here, we demonstrated the impact of iPSC-derived human MSCs on the development of immune tolerance and long-term graft survival in mouse orthotopic airway allografts. BALB/c → C57BL/6 allografts were reconstituted with iPSC-derived MSCs (2 million/transplant/at d0), and allografts were examined for regulatory T cells (Tregs), oxygenation, microvascular blood flow, airway epithelium, and collagen deposition during rejection. RESULTS: We demonstrated that iPSC-derived MSC treatment leads to significant increases in hTSG-6 protein, followed by an upregulation of mouse Tregs and IL-5, IL-10, and IL-15 cytokines, which augments graft microvascular blood flow and oxygenation, and thereby maintained a healthy airway epithelium and prevented the subepithelial deposition of collagen at d90 post transplantation. CONCLUSIONS: Collectively, these data confirmed that iPSC-derived MSC-mediated immunosuppression has potential to establish immune tolerance and rescue allograft from sustained hypoxic/ischemic phase, and subsequently limits long-term airway epithelial injury and collagen progression, which therapeutically warrant a study of Cymerus iPSC-derived MSCs as a potential management option for immunosuppression in transplant recipients.


Subject(s)
Graft Rejection/therapy , Graft Survival , Mesenchymal Stem Cell Transplantation/methods , Organ Transplantation/methods , Trachea/transplantation , Transplantation Tolerance , Animals , Cells, Cultured , Graft Rejection/immunology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Organ Transplantation/adverse effects , T-Lymphocytes, Regulatory/immunology
11.
Transplantation ; 103(5): 899-908, 2019 05.
Article in English | MEDLINE | ID: mdl-30801550

ABSTRACT

BACKGROUND: Survival after lung transplantation is mainly limited by the development of chronic lung allograft dysfunction (CLAD). The aim of this study was to investigate if platelet inhibition by clopidogrel has a functionally relevant influence on the microvascular integrity of orthotopic tracheal allografts as an anatomic basis for the development of CLAD. METHODS: We orthotopically transplanted C57Bl/6 (H-2) tracheas into CBA.J (H-2) recipients who afterwards received clopidogrel (1 mg/kg). Morphometric analysis was performed by measuring epithelial height in proportion to thickness of the lamina propria (epithelium-lamina propria ratio). Tissue oxygenation was determined using a fluorescence quenching technique, and graft perfusion monitoring was performed by laser Doppler flowmetry and lectin-binding assay. Immunohistochemistry was used for detection of CD31 and inducible nitric oxide synthase while iron deposition was shown with Prussian blue reaction. Quantitative reverse transcription polymerase chain reaction analysis was used for gene expression analysis. RESULTS: Isografts maintained good oxygenation and perfusion throughout the experiment, while both were drastically reduced in allografts. Treatment with clopidogrel attenuated graft hypoxia and reduced loss of perfusion. Additionally, clopidogrel led to increased epithelium-lamina propria ratio while iron deposition was impaired. Gene expression analysis revealed elevated levels of angiogenic vascular endothelial growth factor in the clopidogrel group. Improved endothelial function was shown by immunohistochemistry (CD31, inducible nitric oxide synthase). CONCLUSIONS: Continuous administration of clopidogrel significantly improved tissue oxygenation, limited microvascular leakiness, and prevented airway ischemia. These data demonstrate that clopidogrel ameliorates microvascular injury during acute airway rejection, which is a known predisposing factor for the development of CLAD.


Subject(s)
Clopidogrel/administration & dosage , Graft Rejection/prevention & control , Lung Transplantation/adverse effects , Platelet Aggregation Inhibitors/administration & dosage , Trachea/blood supply , Allografts/blood supply , Allografts/drug effects , Allografts/transplantation , Animals , Disease Models, Animal , Graft Rejection/etiology , Humans , Injections, Intraperitoneal , Ischemia/etiology , Ischemia/prevention & control , Mice , Microvessels/drug effects , Trachea/drug effects , Trachea/transplantation , Transplantation, Homologous/adverse effects , Treatment Outcome
12.
J Leukoc Biol ; 105(4): 681-694, 2019 04.
Article in English | MEDLINE | ID: mdl-30536904

ABSTRACT

Complement factor and T-cell signaling during an effective alloimmune response plays a key role in transplant-associated injury, which leads to the progression of chronic rejection (CR). During an alloimmune response, activated complement factors (C3a and C5a) bind to their corresponding receptors (C3aR and C5aR) on a number of lymphocytes, including T-regulatory cells (Tregs), and these cell-molecular interactions have been vital to modulate an effective immune response to/from Th1-effector cell and Treg activities, which result in massive inflammation, microvascular impairments, and fibrotic remodeling. Involvement of the complement-mediated cell signaling during transplantation signifies a crucial role of complement components as a key therapeutic switch to regulate ongoing inflammatory state, and further to avoid the progression of CR of the transplanted organ. This review highlights the role of complement-T cell interactions, and how these interactions shunt the effector immune response during alloimmune inflammation in transplantation, which could be a novel therapeutic tool to protect a transplanted organ and avoid progression of CR.


Subject(s)
Cell Communication , Complement System Proteins/metabolism , Inflammation/immunology , Inflammation/pathology , T-Lymphocytes/cytology , Transplantation , Animals , Humans , Lymphocyte Activation/immunology , T-Lymphocytes/immunology
13.
Front Immunol ; 9: 1010, 2018.
Article in English | MEDLINE | ID: mdl-29881374

ABSTRACT

Microvascular injury during acute rejection has been associated with massive infiltration of CD4+ T effector cells, and the formation of complement products (C3a and C5a). Regulatory T cells (Tregs) are potent immunosuppressors of the adaptive immune system and have proven sufficient to rescue microvascular impairments. Targeting C5a has been linked with improved microvascular recovery, but its effects on the Treg and T effector balance is less well known. Here, we demonstrate the impact of C5a blockade on Treg induction and microvascular restoration in rejecting mouse airway allografts. BALB/c→C57BL/6 allografts were treated with a C5a-neutralizing l-aptamer (10 mg/kg, i.p. at d0 and every second day thereafter), and allografts were serially monitored for Treg infiltration, tissue oxygenation (tpO2), microvascular blood flow, and functional microvasculature between donor and recipients during allograft rejection. We demonstrated that C5a blocking significantly leads to enhanced presence of Tregs in the allograft, reinstates donor-recipient functional microvasculature, improves tpO2, microvascular blood flow, and epithelial repair, followed by an upregulation of IL-5, TGF-ß, IL-10 vascular endothelial growth factor, and ANGPT1 gene expression, while it maintained a healthy epithelium and prevented subepithelial collagen deposition at d28 posttransplantation. Together, these data indicate that inhibition of C5a signaling has potential to preserve microvasculature and rescue allograft from a sustained hypoxic/ischemic phase, limits airway tissue remodeling through the induction of Treg-mediated immune tolerance. These findings may be useful in designing anti-C5a therapy in combination with existing immunosuppressive regimens to rescue tissue/organ rejection.


Subject(s)
Complement C5a/antagonists & inhibitors , Epithelial Cells/immunology , Epithelial Cells/pathology , Graft Rejection/prevention & control , T-Lymphocytes, Regulatory/immunology , Trachea/transplantation , Allografts/immunology , Animals , Complement C5a/immunology , Graft Rejection/immunology , Immune Tolerance , Immunosuppressive Agents/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microvessels/immunology , Respiratory System/cytology , Respiratory System/immunology , Trachea/immunology , Transplantation, Homologous
14.
Clin Immunol ; 174: 84-98, 2017 01.
Article in English | MEDLINE | ID: mdl-27939405

ABSTRACT

Microvascular loss may be a root cause of chronic rejection in lung transplants, which leads to the bronchiolitis obliterans syndrome. Previous research implicates T regulatory cell (Treg) as a key component of immune modulation, however, Treg has never been examined as a reparative mediator to salvage microvasculature during transplantation. Here, we reconstituted purified Tregs in to allografts, and serially monitored allografts for tissue oxygenation, microvascular perfusion for four weeks. We demonstrated that Tregs reconstitution of allografts significantly improve tissue oxygenation, microvascular flow, epithelial repair, number of CD4+CD25highFOXP3+ Tregs, followed by an upregulation of proinflammatory, angiogenic and regulatory genes, while prevented subepithelial deposition of CD4+T cells at d10, and collagen at d28 post-transplantation. Altogether, these findings concluded that Treg-mediated immunotherapy has potential to preserve microvasculature and rescue allograft from sustained hypoxic/ischemic phase, limits airway tissue remodeling, and therefore may be a useful therapeutic tool to prevent chronic rejection after organ transplantation.


Subject(s)
Graft Rejection/immunology , Microvessels/immunology , T-Lymphocytes, Regulatory/immunology , Trachea/transplantation , Animals , Forkhead Transcription Factors/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Transplantation, Homologous
15.
Mol Med ; 22: 892-904, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27878210

ABSTRACT

T regulatory cells (Tregs) play a vital role in suppressing heightened immune responses, and thereby promote a state of immunological tolerance. Tregs modulate both innate and adaptive immunity, which make them a potential candidate for cell-based immunotherapy to suppress uncontrolled activation of graft specific inflammatory cells and their toxic mediators. These grafts specific inflammatory cells (T effector cells) and other inflammatory mediators (Immunoglobulins, active complement mediators) are mainly responsible for graft vascular deterioration followed by acute/chronic rejection. Treg mediated immunotherapy is under investigation to induce allospecific tolerance in various ongoing clinical trials in organ transplant recipients. Treg immunotherapy is showing promising results but the key issues regarding Treg immunotherapy are not yet fully resolved including their mechanism of action, and specific Treg cell phenotype responsible for a state of tolerance. This review highlights the involvement of various subsets of Tregs during immune suppression, novelty of Tregs functions, effects on angiogenesis, emerging technologies for effective Treg expansion, plasticity and safety associated with clinical applications. Altogether this information will assist in designing single/combined Treg mediated therapies for successful clinical trials in solid organ transplantations.

16.
J Biomed Sci ; 23(1): 43, 2016 May 12.
Article in English | MEDLINE | ID: mdl-27176036

ABSTRACT

The biological configuration of extracellular matrix (ECM) plays a key role in how mechanical interactions of the airway with its parenchymal attachments affect the dynamics of airway responses in different pulmonary disorders including asthma, emphysema and chronic bronchitis. It is now recognized that mechanical interactions between airway tissue and ECM play a key regulatory role on airway physiology and kinetics that can lead to the reorganization and remodeling of airway connective tissue. A connective tissue is composed of airway smooth muscle cells (ASM) and the ECM, which includes variety of glycoproteins and therefore the extent of interactions between ECM and ASM affects airway dynamics during exacerbations of major pulmonary disorders. Measurement of the velocity and magnitude of airway closure or opening provide important insights into the functions of the airway contractile apparatus and the interactions with its surrounding connective tissues. This review highlights suitability of lung microsection technique in studying measurements of airway dynamics (narrowing/opening) and associated structural distortions in airway compartments.


Subject(s)
Extracellular Matrix , Lung Diseases , Lung , Microdissection , Myocytes, Smooth Muscle , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Humans , Lung/metabolism , Lung/pathology , Lung Diseases/metabolism , Lung Diseases/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology
17.
J Transl Med ; 13: 272, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26289385

ABSTRACT

The complement mediators are the major effectors of the immune balance, which operates at the interface between the innate and adaptive immunity, and is vital for many immunoregulatory functions. Activation of the complement cascade through the classical, alternative or lectin pathways thus generating opsonins like C3b and C5b, anaphylatoxins C3a and C5a, chemotaxin, and inflammatory mediators, which leads to cellular death. Complement mediators that accelerate the airway remodeling are not well defined; however, an uncontrolled Th2-driven adaptive immune response has been linked to the major pathophysiologic features of asthma, including bronchoconstriction, airway hyperresponsiveness, and airway inflammation. The mechanisms leading to complement mediated airway tissue remodeling, and the effect of therapy on preventing and/or reversing it are not clearly understood. This review highlights complement-mediated inflammation, and the mechanism through it triggers the airway tissue injury and remodeling in the airway epithelium that could serve as potential targets for developing a new drug to rescue the asthma patients.


Subject(s)
Airway Remodeling , Asthma/immunology , Complement Activation , Complement C3a/immunology , Complement C5a/immunology , Anaphylatoxins/immunology , Animals , Asthma/pathology , Chemotactic Factors/immunology , Humans , Immunity, Innate , Inflammation/immunology , Inflammation Mediators/immunology , Interleukin-13/immunology , Opsonin Proteins/immunology , Th2 Cells/cytology , Transforming Growth Factor beta/immunology
18.
Respir Med ; 108(4): 543-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24468195

ABSTRACT

Asthma is the most common respiratory disorder, and is characterized by distal airway inflammation and hyperresponsiveness. This disease challenges human health because of its increasing prevalence, severity, morbidity, and the lack of a proper and complete cure. Asthma is characterized by T(H)2-skewed inflammation with elevated pulmonary levels of IL-4, IL-5, and IL-13 levels. Although there are early forays into targeting T(H)2 immunity, less-specific corticosteroid therapy remains the immunomodulator of choice. Innate immune injury mediated by complement components also act as potent mediators of the allergic inflammatory responses and offer a new and exciting possibility for asthma immunotherapy. The complement cascade consists of a number of plasma- and membrane-bound proteins, and the cleavage products of these proteins (C3 and C5) regulate the magnitude of adaptive immune responses. Complement protein are responsible for many pathophysiological features of asthma, including inflammatory cell infiltration, mucus secretion, increases in vascular permeability, and smooth muscle cell contraction. This review highlights the complement-mediated injury during asthma inflammation, and how blockade of active complement mediators may have therapeutic application.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Complement Inactivating Agents/therapeutic use , Asthma/immunology , Complement C3a/biosynthesis , Complement C5a/biosynthesis , Complement System Proteins/immunology , Humans , Immunity, Innate , Molecular Targeted Therapy/methods
19.
Multidiscip Respir Med ; 8(1): 11, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23388501

ABSTRACT

BACKGROUND: Airway inflammation stimulates proliferation of airway smooth muscle cell, which contributes to the development of hyperplasia and hypertrophy of smooth muscle cell. The increase in airway smooth muscle cell mass is believed to be due to an up-regulation of inflammatory mediators in the airway. It is now well recognized that chronic inflammation as well as airway hyper-responsiveness and remodeling of airway during inflammation, are crucial to asthma. Airway hyper-responsiveness is caused by increased cell proliferation or by hypertrophy of airway smooth muscle cell depending on the nature of the inflammatory stimulation. Airway smooth muscle cell proliferation in asthma is regulated by the proinflammatory cytokines including IL-1ß and TNF-α. These proinflammatory cytokines have been shown to influence human airway smooth muscle cell proliferation in vitro, which is due to cyclooxygenase-2 expression, production of prostaglandin E2, and increased cAMP levels. CONCLUSIONS: This review highlights the role of different proinflammatory cytokines in regulating airway smooth muscle cell growth and also focuses on regulation of differential gene expression in airway smooth muscle cell by growth factors and cytokines, also to bestow unique insight into the effects of conventional asthma therapies on airway smooth muscle cell proliferation and development of new therapeutic strategies to control asthma.

20.
Am J Physiol Lung Cell Mol Physiol ; 299(1): L98-L108, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20435686

ABSTRACT

Understanding how tissue remodeling affects airway responsiveness is of key importance, but experimental data bearing on this issue remain scant. We used lung explants to investigate the effects of enzymatic digestion on the rate and magnitude of airway narrowing induced by acetylcholine. To link the observed changes in narrowing dynamics to the degree of alteration in tissue mechanics, we compared our experimental results with predictions made by a computational model of a dynamically contracting elastic airway embedded in elastic parenchyma. We found that treatment of explanted airways with two different proteases (elastase and collagenase) resulted in differential effects on the dynamics of airway narrowing following application of ACh. Histological corroboration of these different effects is manifest in different patterns of elimination of collagen and elastin from within the airway wall and the surrounding parenchyma. Simulations with a computational model of a dynamically contracting airway embedded in elastic parenchyma suggest that elastase exerts its functional effects predominately through a reduction in parenchymal tethering, while the effects of collagenase are more related to a reduction in airway wall stiffness. We conclude that airway and parenchymal remodeling as a result of protease activity can have varied effects on the loads opposing ASM shortening, with corresponding consequences for airway responsiveness.


Subject(s)
Bronchoconstriction/physiology , Muscle, Smooth/physiology , Respiratory System , Acetylcholine/pharmacology , Animals , Bronchoconstriction/drug effects , Elasticity , Female , Mice , Mice, Inbred BALB C , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Smooth/drug effects , Pancreatic Elastase , Respiratory System/anatomy & histology , Respiratory System/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...