Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Math Biosci Eng ; 19(10): 10550-10580, 2022 07 25.
Article in English | MEDLINE | ID: mdl-36032006

ABSTRACT

The Internet of Things (IoT) is a paradigm that connects a range of physical smart devices to provide ubiquitous services to individuals and automate their daily tasks. IoT devices collect data from the surrounding environment and communicate with other devices using different communication protocols such as CoAP, MQTT, DDS, etc. Study shows that these protocols are vulnerable to attack and prove a significant threat to IoT telemetry data. Within a network, IoT devices are interdependent, and the behaviour of one device depends on the data coming from another device. An intruder exploits vulnerabilities of a device's interdependent feature and can alter the telemetry data to indirectly control the behaviour of other dependent devices in a network. Therefore, securing IoT devices have become a significant concern in IoT networks. The research community often proposes intrusion Detection Systems (IDS) using different techniques. One of the most adopted techniques is machine learning (ML) based intrusion detection. This study suggests a stacking-based ensemble model makes IoT devices more intelligent for detecting unusual behaviour in IoT networks. The TON-IoT (2020) dataset is used to assess the effectiveness of the proposed model. The proposed model achieves significant improvements in accuracy and other evaluation measures in binary and multi-class classification scenarios for most of the sensors compared to traditional ML algorithms and other ensemble techniques.


Subject(s)
Internet of Things , Algorithms , Humans , Machine Learning , Telemetry
2.
Sensors (Basel) ; 21(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34770322

ABSTRACT

A large number of smart devices in Internet of Things (IoT) environments communicate via different messaging protocols. Message Queuing Telemetry Transport (MQTT) is a widely used publish-subscribe-based protocol for the communication of sensor or event data. The publish-subscribe strategy makes it more attractive for intruders and thus increases the number of possible attacks over MQTT. In this paper, we proposed a Deep Neural Network (DNN) for intrusion detection in the MQTT-based protocol and also compared its performance with other traditional machine learning (ML) algorithms, such as a Naive Bayes (NB), Random Forest (RF), k-Nearest Neighbour (kNN), Decision Tree (DT), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRUs). The performance is proved using two different publicly available datasets, including (1) MQTT-IoT-IDS2020 and (2) a dataset with three different types of attacks, such as Man in the Middle (MitM), Intrusion in the network, and Denial of Services (DoS). The MQTT-IoT-IDS2020 contains three abstract-level features, including Uni-Flow, Bi-Flow, and Packet-Flow. The results for the first dataset and binary classification show that the DNN-based model achieved 99.92%, 99.75%, and 94.94% accuracies for Uni-flow, Bi-flow, and Packet-flow, respectively. However, in the case of multi-label classification, these accuracies reduced to 97.08%, 98.12%, and 90.79%, respectively. On the other hand, the proposed DNN model attains the highest accuracy of 97.13% against LSTM and GRUs for the second dataset.


Subject(s)
Deep Learning , Internet of Things , Bayes Theorem , Humans , Neural Networks, Computer , Telemetry
SELECTION OF CITATIONS
SEARCH DETAIL