Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Hortic Res ; 11(3): uhae014, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38464477

ABSTRACT

Biotic and abiotic stresses negatively affect the yield and overall plant developmental process, thus causing substantial losses in global sweet potato production. To cope with stresses, sweet potato has evolved numerous strategies to tackle ever-changing surroundings and biological and environmental conditions. The invention of modern sequencing technology and the latest data processing and analysis instruments has paved the way to integrate biological information from different approaches and helps to understand plant system biology more precisely. The advancement in omics technologies has accumulated and provided a great source of information at all levels (genome, transcript, protein, and metabolite) under stressful conditions. These latest molecular tools facilitate us to understand better the plant's responses to stress signaling and help to process/integrate the biological information encoded within the biological system of plants. This review briefly addresses utilizing the latest omics strategies for deciphering the adaptive mechanisms for sweet potatoes' biotic and abiotic stress tolerance via functional genomics, transcriptomics, proteomics, and metabolomics. This information also provides a powerful reference to understand the complex, well-coordinated stress signaling genetic regulatory networks and better comprehend the plant phenotypic responses at the cellular/molecular level under various environmental stimuli, thus accelerating the design of stress-resilient sweet potato via the latest genetic engineering approaches.

2.
J Control Release ; 367: 135-147, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237687

ABSTRACT

Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency unfocused therapeutic ultrasound (TUS). In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm) made from identical shell material and core gas. Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB + TUS) and hDox-NB + TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB + TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB + TUS compared to hDox-MB + TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB + TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.


Subject(s)
Liver Neoplasms , Microbubbles , Rats , Animals , Humans , Tissue Distribution , Doxorubicin/therapeutic use , Doxorubicin/pharmacokinetics , Drug Delivery Systems/methods , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Cell Line, Tumor
3.
Sci Total Environ ; 912: 169288, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38110103

ABSTRACT

Cadmium contamination poses severe environmental and health threats, necessitating effective mitigation strategies. Rice husk biochar (BC) and nanoparticle (NP) treatments are emerging strategies with limited research on their synergistic benefits. This study assesses BC, silicon NPs (nSi), and iron NPs (nFe) modifications (B-nSi, B-nFe, and B-nSi-nFe) to reduce Cd-bioavailability in soil and its toxicity in maize, not reported before. Characterization of amendments validated, nSi and nFe attachment to BC, forming new mineral crystals to adsorb Cd. We found that B-nSi-nFe induced Cd-immobilization in soil by the formation of Cd-ligand complexes with the effective retention of NPs within microporous structure of BC. B-nSi-nFe increased soil pH by 0.76 units while reducing bioavailable Cd by 49 %, than Ck-Cd. Resultantly, B-nSi-nFe reduced Cd concentrations in roots and shoots by 51 % and 75 %, respectively. Moreover, the application of B-nSi-nFe significantly enhanced plant biomass, antioxidant activities, and upregulated the expression of antioxidant genes [ZmAPX (3.28 FC), ZmCAT (3.20 FC), ZmPOD (2.58 FC), ZmSOD (3.08 FC), ZmGSH (3.17 FC), and ZmMDHAR (3.80 FC)] while downregulating Cd transporter genes [ZmNramp5 (3.65 FC), ZmHMA2 (2.92 FC), and ZmHMA3 (3.40 FC)] compared to Ck-Cd. Additionally, confocal microscopy confirmed the efficacy of B-nSi-nFe in maintaining cell integrity due to reduced oxidative stress. SEM and TEM observations revealed alleviation of Cd toxicity to stomata, guard cells, and ultracellular structures with B-nSi-nFe treatment. Overall, this study demonstrated the potential of B-nSi-nFe for reducing Cd mobility in soil-plant system, mitigating Cd-toxicity in plants and improving enzymatic activities in soil.


Subject(s)
Nanoparticles , Oryza , Soil Pollutants , Iron/metabolism , Cadmium/analysis , Zea mays/metabolism , Silicon , Antioxidants/metabolism , Charcoal/chemistry , Soil/chemistry , Nanoparticles/toxicity , Nanoparticles/chemistry , Oryza/chemistry , Soil Pollutants/analysis
4.
Nanomaterials (Basel) ; 13(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38063756

ABSTRACT

Worldwide, hypoxia-related conditions, including cancer, COVID-19, and neuro-degenerative diseases, often lead to multi-organ failure and significant mortality. Oxygen, crucial for cellular function, becomes scarce as levels drop below 10 mmHg (<2% O2), triggering mitochondrial dysregulation and activating hypoxia-induced factors (HiFs). Herein, oxygen nanobubbles (OnB), an emerging versatile oxygen delivery platform, offer a novel approach to address hypoxia-related pathologies. This review explores OnB oxygen delivery strategies and systems, including diffusion, ultrasound, photodynamic, and pH-responsive nanobubbles. It delves into the nanoscale mechanisms of OnB, elucidating their role in mitochondrial metabolism (TFAM, PGC1alpha), hypoxic responses (HiF-1alpha), and their interplay in chronic pathologies including cancer and neurodegenerative disorders, amongst others. By understanding these dynamics and underlying mechanisms, this article aims to contribute to our accruing knowledge of OnB and the developing potential in ameliorating hypoxia- and metabolic stress-related conditions and fostering innovative therapies.

5.
bioRxiv ; 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37732235

ABSTRACT

Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency ultrasound. In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm). Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB+TUS) and hDox-NB+TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB+TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB+TUS compared to hDox-MB+TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB+TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.

6.
Arch Biochem Biophys ; 747: 109763, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37739116

ABSTRACT

OBJECTIVE: Cardiac hypertrophy is a condition of abnormal cardiomyocyte enlargement accompanied by ventricular wall thickening. The study aims to investigate the role of miR-15a-5p in the regulation of mitofusin-2 (MFN-2) and to explore the cardioprotective effect of terpolymers ES-37 and L-37. METHODS: In this study, the Sprague Dawley rats' cardiac hypertrophic model was established by administering 5 mg/kg Isoproterenol subcutaneously every other day for 14 days. As treatment rats received NAC (50 mg/kg), NAC treatment (50 mg/kg NAC + 5 mg/kg ISO), ES-37 (1 mg/kg) and ES-37 treatment (1 mg/kg ES-37+5 mg/kg ISO), L-37 (1 mg/kg) and L-37 treatment (1 mg/kg L-37+5 mg/kg ISO). subcutaneously every other day for 14 days. NAC, ES 37 and L-37 were given after 1 h of Isoproterenol administration in treatment groups. Cardiac hypertrophy was confirmed through morphological and histological analysis. For estimation of oxidative stress profiling, ROS and TBARS and antioxidative profiling superoxide dismutase (SOD), Catalase, and Glutathione (GSH) levels were checked. Triglyceride, cholesterol, alanine transaminase (ALT), and aspartate transaminase (AST) were performed to evaluate levels of lipid profiling and liver profiling. Molecular expression analysis was checked through real-time PCR, and western blotting both at the transcriptional and translational levels. Molecular docking studies were performed to study the interactions and modes of binding between the synthetic polymers with three proteins (Mitofusin-2, DRP-1 and PUMA). All the studies were carried out using the AutoDock Vina software and the protein-ligand complexes were visualized in Biovia Discovery Studio. Cardiac hypertrophy was confirmed by the relative changes in the cellular structure of the heart by histopathological examination and physiological changes by estimating organ weights. Biochemical profiling results depict elevated oxidative and lipid profiles signify myocardial damage. N-acetyl cysteine (NAC), ES-37, and L-37 overcome the cardiac hypertrophic responses through attenuating oxidative stress and enhancing the antioxidative signaling mechanism. miR-15a-5p was identified as hypertrophic microRNA directly regulating the expression of Mitofusin-2 (MFN-2). Significantly increased expression of miR-15a-5p, Dynamin related protein 1 (Drp1), and P53 upregulated modulator of apoptosis (PUMA), was observed in the disease group, whereas MFN-2 expression was observed downregulated. N-acetyl cysteine (NAC), ES-37, and L-37 showed increased expression of antiapoptotic maker MFN-2 and decreased expression of miR-15a-5p, Drp1, and PUMA in treatment groups suggesting their cardioprotective role in attenuation of cardiac hypertrophy. An analysis of the docking results shows that ES-37 has greater binding affinity with the target proteins compared to L-37, with the highest binding values reported for MFN-2. CONCLUSION: The physiochemical properties of ES-37 and L-37 predicted it as a good drug-like molecule and its mechanism of action is predictably through inhibition of ROS. Molecular docking results shows that the polymer ES-37 has greater binding affinity with the target proteins compared to L-37, with the highest binding values reported for MFN-2. Thus, the study validates the role and targeting of miR-15a-5p and MFN-2 in cardiac hypertrophy as well as the therapeutic potential of NAC, ES-37, and L-37 in overcoming oxidative stress and myocardial damage.

7.
Redox Biol ; 64: 102805, 2023 08.
Article in English | MEDLINE | ID: mdl-37406579

ABSTRACT

Plants being sessile in nature, are exposed to unwarranted threats as a result of constantly changing environmental conditions. These adverse factors can have negative impacts on their growth, development, and yield. Hormones are key signaling molecules enabling cells to respond rapidly to different external and internal stimuli. In plants, melatonin (MT) plays a critical role in the integration of various environmental signals and activation of stress-response networks to develop defense mechanisms and plant resilience. Additionally, melatonin can tackle the stress-induced alteration of cellular redox equilibrium by regulating the expression of redox hemostasis-related genes and proteins. The purpose of this article is to compile and summarize the scientific research pertaining to MT's effects on plants' resilience to biotic and abiotic stresses. Here, we have summarized that MT exerts a synergistic effect with other phytohormones, for instance, ethylene, jasmonic acid, and salicylic acid, and activates plant defense-related genes against phytopathogens. Furthermore, MT interacts with secondary messengers like Ca2+, nitric oxide, and reactive oxygen species to regulate the redox network. This interaction triggers different transcription factors to alleviate stress-related responses in plants. Hence, the critical synergic role of MT with diverse plant hormones and secondary messengers demonstrates phytomelatonin's importance in influencing multiple mechanisms to contribute to plant resilience against harsh environmental factors.


Subject(s)
Melatonin , Plant Growth Regulators , Plant Growth Regulators/metabolism , Melatonin/pharmacology , Melatonin/metabolism , Plants/genetics , Stress, Physiological/genetics , Oxidation-Reduction
9.
Nanomaterials (Basel) ; 13(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36986025

ABSTRACT

Nanofluids and nanotechnology are very important in enhancing heat transfer due to the thermal conductivity of their nanoparticles, which play a vital role in heat transfer applications. Researchers have used cavities filled with nanofluids for two decades to increase the heat-transfer rate. This review also highlights a variety of theoretical and experimentally measured cavities by exploring the following parameters: the significance of cavities in nanofluids, the effects of nanoparticle concentration and nanoparticle material, the influence of the inclination angle of cavities, heater and cooler effects, and magnetic field effects in cavities. The different shapes of the cavities have several advantages in multiple applications, e.g., L-shaped cavities used in the cooling systems of nuclear and chemical reactors and electronic components. Open cavities such as ellipsoidal, triangular, trapezoidal, and hexagonal are applied in electronic equipment cooling, building heating and cooling, and automotive applications. Appropriate cavity design conserves energy and produces attractive heat-transfer rates. Circular microchannel heat exchangers perform best. Despite the high performance of circular cavities in micro heat exchangers, square cavities have more applications. The use of nanofluids has been found to improve thermal performance in all the cavities studied. According to the experimental data, nanofluid use has been proven to be a dependable solution for enhancing thermal efficiency. To improve performance, it is suggested that research focus on different shapes of nanoparticles less than 10 nm with the same design of the cavities in microchannel heat exchangers and solar collectors.

10.
Nanoscale Adv ; 5(7): 1853-1869, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36998671

ABSTRACT

Bioactive molecules and their effects have been influenced by their solubility and administration route. In many therapeutic reagents, the performance of therapeutics is dependent on physiological barriers in the human body and delivery efficacy. Therefore, an effective and stable therapeutic delivery promotes pharmaceutical advancement and suitable biological usage of drugs. In the biological and pharmacological industries, lipid nanoparticles (LNPs) have emerged as a potential carrier to deliver therapeutics. Since studies reported doxorubicin-loaded liposomes (Doxil®), LNPs have been applied to numerous clinical trials. Lipid-based nanoparticles, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid nanoparticles, have also been developed to deliver active ingredients in vaccines. In this review, we present the type of LNPs used to develop vaccines with attractive advantages. We then discuss messenger RNA (mRNA) delivery for the clinical application of mRNA therapeutic-loaded LNPs and recent research trend of LNP-based vaccine development.

11.
ACS Omega ; 8(7): 6218-6224, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36844557

ABSTRACT

This work presents the effect of hydrogen sulfide gas on the phase behavior of both methane gas hydrate formation and CO2 gas hydrate formation. For this, the thermodynamic equilibrium conditions for various gas mixtures containing CH4/H2S and CO2/H2S are initially found by simulation using PVTSim software. These simulated results are compared using an experimental approach and the available literature. Then, the thermodynamic equilibrium conditions generated by simulation are used for generating Hydrate Liquid-Vapor-Equilibrium (HLVE) curves to understand the phase behavior of gases. Further, the effect of hydrogen sulfide on the thermodynamic stability of methane and carbon dioxide hydrates was studied. It was clearly observed from the results that an increase in H2S composition in the gas mixture decreases the stability of CH4 and CO2 hydrates.

12.
Free Radic Biol Med ; 199: 2-16, 2023 04.
Article in English | MEDLINE | ID: mdl-36775108

ABSTRACT

Exposure of crops to low temperature (LT) during emerging and reproductive stages influences their growth and development. In this study, we have isolated a cold induced, nucleus-localized lipid A gene from rice named OsLPXC, which encodes a protein of 321 amino acids. Knockout of OsLPXC resulted in enhance sensitivity to LT stress in rice, with increased accumulation of reactive oxygen species (ROS), malondialdehyde and electrolyte leakage, while expression and activities of antioxidant enzymes were significantly suppressed. The accumulation of chlorophyll content and net photosynthetic rate of knockout plants were also decreased compared with WT under LT stress. The functional analysis of differentially expressed genes (DEGs), showed that numerous genes associated with antioxidant defense, photosynthesis, cold signaling were solely expressed and downregulated in oslpxc plants compared with WT under LT. The accumulation of methyl jasmonate (MeJA) in leave and several DEGs related to the jasmonate biosynthesis pathway were significantly downregulated in OsLPXC knockout plants, which showed differential levels of MeJA regulation in WT and knockout plants in response to cold stress. These results indicated that OsLPXC positively regulates cold tolerance in rice via stabilizing the expression and activities of ROS scavenging enzymes, photosynthetic apparatus, cold signaling genes, and jasmonate biosynthesis.


Subject(s)
Antioxidants , Oryza , Antioxidants/metabolism , Oryza/genetics , Oryza/metabolism , Reactive Oxygen Species/metabolism , Cold-Shock Response , Oxidative Stress , Gene Expression Regulation, Plant , Cold Temperature
13.
Sci Rep ; 13(1): 836, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36646741

ABSTRACT

The oxygenated hydro diesel (OHD) is prepared from hydrogen peroxide (H2O2), acetone, and seaweed polysaccharide. A long-term study was carried out on the OHD fuel blend stability for about a year at various temperatures. The long-term stability shows very stable properties, no easy emulsion breaking, and a long storage period. The neat diesel and blend fuel performance test was conducted at various engine speeds, 1700-3100 RPM the diesel blend with 5 wt.% and 10 wt. % of H2O2 revealed the best fraction for reducing smoke and emissions. The blend contains 15 wt.% H2O2, revealing a significant reduction in exhaust temperature without considering the engine's performance. Moreover, the performance of the OHD also revealed an economizing rate, decreasing environmental pollution and prolonging the engine's service life. The diesel engine performance and environmental evaluation leading to exhaust emissions characterization ([Formula: see text], [Formula: see text], and others). Based on the results, the various concentrations of H2O2 are an effective method for reducing the emission of diesel engines. Decreased CO, SO2, unburned hydrocarbons, and NO2 were also observed as percentages of H2O2. Due to increased oxygen content, water content and cetane number, the number of unburned hydrocarbons from diesel fuel decreased with the addition of H2O2. Therefore, the OHD blend can significantly curtail the exhaust emission of conventional diesel fuel, which will help reduce the harmful greenhouse gas emissions from diesel fuel sources.

15.
Metab Brain Dis ; 38(2): 483-505, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35344129

ABSTRACT

Mangifera indica L., also known as mango, is a tropical fruit that belongs to the Anacardiaceae family and is prized for its juiciness, unique flavour, and worldwide popularity. The current study aimed to probe into antidepressant power (ADP) of MIS in animals and confirmation of ADP with in silico induced-fit molecular docking. The depression model was prepared by exposing mice to various stressors from 9:00 am to 2:00 pm during 42 days study period. MIS extract and fluoxetine were given daily for 30 min before exposing animals to stressors. ADP was evaluated by various behavioural tests and biochemical analysis. Results showed increased physical activity in mice under behavioural tests, plasma nitrite and malondialdehyde (MDA) levels and monoamine oxidase A (MAO-A) activity decreased dose-dependently in MIS treated mice and superoxide dismutases (SOD) levels increased in treated groups as compared to disease control. With the peculiar behaviour and significant interactions of the functional residues of target proteins with selected ligands along with the best absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, it is concluded that catechin could be the best MAO-A inhibitor at a binding energy of -8.85 kcal/mol, and two hydrogen bonds were generated with Cys406 (A) and Gly443 (A) residues of the active binding site of MAO-A enzyme. While catechin at -6.86 kcal/mol generated three hydrogen bonds with Ala263 (A) and Gly434 (A) residues of the active site of monoamine oxidase B (MAO-B) enzyme and stabilized the best conformation. Therefore, it is highly recommended to test the selected lead-like compound catechin in the laboratory with biological system analysis to confirm its activity as MAO-A and MAO-B inhibitors so it can be declared as one of the novel therapeutic options with anti-depressant activity. Our findings concluded that M. indica seeds could be a significant and alternative anti-depressant therapy.


Subject(s)
Catechin , Mangifera , Mice , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/chemistry , Mangifera/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Molecular Docking Simulation , Catechin/analysis , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Seeds/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
16.
Chemosphere ; 313: 137550, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36521742

ABSTRACT

Gas Hydrate modelling has gained huge attention in the past decade due to its increase in usage for various energy as well as environmental applications at an industrial scale. As the experimental approach is highly expensive and time-consuming, modelling is the best way to predict the conditions before the actual applications at industrial scales. The commercial software currently existing uses the equation of states (EOS) to predict the thermodynamic conditions of gas hydrates. But, in certain cases, the prediction by using EOS fails to predict the hydrate conditions accurately. Therefore, there arose a need for an accurate prediction model to estimate the hydrate formation conditions. So, in this work, an accurate prediction model has been proposed to predict the thermodynamic equilibrium conditions of the gas hydrate formation. The performance of prediction accuracy for the proposed model is compared with those of the SRK equation of state and Peng Robinson (PR) Equation of state. It was observed that in most of the cases the proposed model has predicted the thermodynamic conditions more accurately than the PR and SRK equation of state. This work helps in understanding the limitations of EOS for the prediction hydrate conditions. Also, the current work helps in strengthening the conventional statistical modelling technique to predict the hydrate conditions for a broader range.


Subject(s)
Water , Thermodynamics
17.
Chemosphere ; 312(Pt 2): 137325, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36423723

ABSTRACT

This experimental study evaluates the inhibition performance of kinetic hydrates inhibitors (KHIs) of three amino acids, namely: glycine, proline, and alanine. It includes the performance comparison with the conventional inhibitor i.e., polyvinyl pyrrolidine (PVP) on methane (CH4) hydrate in oil systems in two different systems, i.e., deionized and brine water systems. The experiments were conducted in a high-pressure hydrate reactor replicating subsea pipeline conditions, i.e., the temperature of 274 K, pressure 8 MPa, and concentration of 1 wt%, by applying the isochoric cooling technique. The formation kinetics results suggest that all the studied amino acids effectively worked as kinetic inhibitors by potentially delaying CH4 hydrate formations due to their steric hindrance abilities. The interesting phenomenon was observed that the different studied amino acids behave differently in the brine-oil and deionized water-oil systems due to their side chain interaction. In a deionized water-oil system, glycine gives the highest inhibition performance by reducing the hydrate formation risk. On the contrary, in the brine-oil system, proline showed a significant inhibition effect. It should be noted that both glycine and proline were giving almost similar inhibition performance compared to the conventional hydrate inhibitor PVP, however glycine and proline significantly reduced CH4 consumption into hydrate due to their high surface active under CH4 conditions, which strengths the surface tension of the liquid/CH4 interface. Furthermore, according to the findings, it shows that increased side alkyl chain lengths of amino acids increase the efficacy of their kinetic hydration inhibition performance due to better surface adsorption abilities. The amino acids' ability to suppress growth is also linked strongly with hydrophobicity and alkyl side chain length. The findings of this study contribute significantly to current efforts to limit gas hydrate formation in offshore pipelines, particularly in oil-dominant pipelines.


Subject(s)
Amino Acids , Fabaceae , Methane , Glycine/pharmacology , Proline , Water
18.
Chemosphere ; 308(Pt 1): 136181, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36064016

ABSTRACT

In this experimental and modelling study, Diethylene glycol (DEG) and Glycine (Gly) mixtures are introduced to hinder carbon dioxide hydrate formation by pushing the phase boundaries on the lower temperature side. The mixture of DEG and Gly with the ratio of 1:1 is experimented at 15, 10, and 5 wt% concentrations and the pressure vary from 2.5 to 4.0 MPa. The T-cycle method is employed to assess the effect of the studied blends on the CO2 hydrate by evaluating the hydrate dissociation temperature. Varied compositions of pure DEG and Gly as well as their mixtures are used to compute the synergistic effect. The studied system's thermodynamic hydrate inhibition (THI) influence is a concentration-driven phenomenon. Higher concentration can shift the hydrate liquid vapor equilibrium (HLVE) curve to lower temperatures and high-pressure regions. The outcomes depict that mixture of DEG and Gly at 15 wt%. Shows comparatively better results than the mixtures at 5 and 10 wt%, respectively. The obtained 10 wt% mixture results have also been compared with the conventional hydrate inhibitors and other THIs systems and provide a significant hydrate average suppression (ΔT) of 2.4 K. Furthermore, the freezing point-based Dickens and Quint Hunt model was also applied to predict the HLVE data of CO2 hydrates and satisfactory agreement found with maximum mean absolute error (MAE) of 0.498 K. A better inhibitory performance was seen when diethylene glycol and glycine were combined, demonstrating the potential of amino acids as synergistic inhibitors in the exploitation of hydrates, transportation of oil and gas, and flow assurance.


Subject(s)
Carbon Dioxide , Water , Amino Acids , Carbon Dioxide/chemistry , Ethylene Glycols , Gases/chemistry , Glycine , Thermodynamics , Water/chemistry
19.
Biomed Res Int ; 2022: 5347224, 2022.
Article in English | MEDLINE | ID: mdl-35928915

ABSTRACT

Phytopathogenic fungi are serious threats in the agriculture sector especially in fruit and vegetable production. The use of plant essential oil as antifungal agents has been in practice from many years. Plant essential oils (PEOs) of Cuminum cyminum, Trachyspermum ammi, Azadirachta indica, Syzygium aromaticum, Moringa oleifera, Mentha spicata, Eucalyptus grandis, Allium sativum, and Citrus sinensis were tested against Fusarium oxysporum. Three phase trials consist of lab testing (MIC and MFC), field testing (seed treatment and foliar spray), and computer-aided fungicide design (CAFD). Two concentrations (25 and 50 µl/ml) have been used to asses MIC while MFC was assessed at four concentrations (25, 50, 75, and 100 µl/ml). C. sinensis showed the largest inhibition zone (47.5 and 46.3 m2) for both concentrations. The lowest disease incidence and disease severity were recorded in treatments with C. sinensis PEO. Citrus sinensis that qualified in laboratory and field trials was selected for CAFD. The chemical compounds of C. sinensis PEO were docked with polyketide synthase beta-ketoacyl synthase domain of F. oxysporum by AutoDock Vina. The best docked complex was formed by nootkatone with -6.0 kcal/mol binding affinity. Pharmacophore of the top seven C. sinensis PEO compounds was used for merged pharmacophore generation. The best pharmacophore model with 0.8492 score was screened against the CMNP database. Top hit compounds from screening were selected and docked with polyketide synthase beta-ketoacyl synthase domain. Four compounds with the highest binding affinity and hydrogen bonding were selected for confirmation of lead molecule by doing MD simulation. The polyketide synthase-CMNPD24498 showed the highest stability throughout 80 ns run of MD simulation. CMNPD24498 (FW054-1) from Verrucosispora was selected as the lead compound against F. oxysporum.


Subject(s)
Fungicides, Industrial , Fusarium , Oils, Volatile , Antifungal Agents/pharmacology , Fungicides, Industrial/pharmacology , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Polyketide Synthases
20.
Chemosphere ; 307(Pt 4): 136102, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36007731

ABSTRACT

The study presents the effect of freezing point depression and hydrogen bonding energy interaction on four ammonium hydroxide-based ionic liquids (AHILs) of gas hydrate systems. The AHILs investigated are tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide. The considered hydrate system includes methane (CH4), carbon dioxide (CO2), and three binary mixed gas hydrates (70-30 CO2 + CH4, 50-50 CO2 + CH4, 30-70 CO2 + CH4), which are often encountered in the flow assurance pipelines. The experimental temperature range is between 274.0 and 285.0 K, corresponding to pipeline pressures for different gas systems. The thermodynamic influence, i.e., average suppression temperature (ΔT) of the studied system, was reported for different mass concentrations (1, 5, and 10 wt%) and correlated with the freezing point depression and hydrogen bonding energy interaction of AHILs. The study also covers the structural impact of AHILs (in the form of alkyl chain variation) on the thermodynamic hydrate inhibition (THI) behaviour via freezing point and hydrogen bonding energy interactions. Findings revealed that the increased alkyl chain length of AHILs reduced the ΔT due to a decrease in hydrogen bonding ability. The highest THI inhibition (ΔT = 2.27 K) is attained from the lower alkyl chain AHIL, i.e., TMAOH (10 wt%) for the CO2 hydrate system. The freezing point depression of AHILs is a concentration-dependent phenomenon. Increased concentration of the AHILs in the system yielded lower freezing point temperature, positively influencing hydrate mitigation. Although the study provided the initial insight between the freezing point tendency and hydrogen bonding energies of AHILs on thermodynamic inhibition (ΔT). Based on the freezing point depression and hydrogen bonding energy interaction, a more generalized correlation should be developed to predict any potential ionic liquids regarded as promising hydrate inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...