Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Front Genet ; 15: 1356972, 2024.
Article in English | MEDLINE | ID: mdl-38915826

ABSTRACT

Investigating therapeutic miRNAs is a rewarding endeavour for pharmaceutical companies. Since its discovery in 1993, our understanding of miRNA biology has advanced significantly. Numerous studies have emphasised the disruption of miRNA expression in various diseases, making them appealing candidates for innovative therapeutic approaches. Hepatocellular carcinoma (HCC) is a significant malignancy that poses a severe threat to human health, accounting for approximately 70%-85% of all malignant tumours. Currently, the efficacy of several HCC therapies is limited. Alterations in various biomacromolecules during HCC progression and their underlying mechanisms provide a basis for the investigation of novel and effective therapeutic approaches. MicroRNAs, also known as miRNAs, have been identified in the last 20 years and significantly impact gene expression and protein translation. This atypical expression pattern is strongly associated with the onset and progression of various malignancies. Gene therapy, a novel form of biological therapy, is a prominent research area. Therefore, miRNAs have been used in the investigation of tumour gene therapy. This review examines the mechanisms of action of miRNAs, explores the correlation between miRNAs and HCC, and investigates the use of miRNAs in HCC gene therapy.

2.
Cureus ; 16(4): e58224, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38689668

ABSTRACT

Pathological fractures commonly occur in patients with metastatic bone diseases, particularly multiple myeloma. The current optimal management for metastatic pathological lesions affecting the proximal femur is surgical intervention. Surgical planning and appropriate use of imaging modalities are pivotal in the appropriate treatment of pathological fractures. Impending fractures create added layers of complexity in the decision-making process. The appropriateness of different surgical interventions involves a multi-disciplinary approach and the importance of holistic healthcare is paramount in these circumstances.

5.
Curr Probl Cardiol ; 49(3): 102397, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232921

ABSTRACT

Cardiovascular diseases (CVDs) are still leading to a significant number of deaths worldwide despite the remarkable advancements in medical technology and pharmacology. Managing patients with established CVDs is a challenge for healthcare providers as it requires reducing the chances of recurring cardiovascular events. On the other hand, changing one's way of life can also significantly impact this area, reducing the likelihood of cardiovascular disease and death through their unique advantages. Consequently, it is advisable for healthcare providers to regularly advise their patients with coronary issues to participate in organized physical exercise and improve their overall physical activity. Additionally, patients should adhere to a diet that promotes heart health, cease smoking, avoid exposure to secondhand smoke, and address any psychosocial stressors that may heighten the risk of cardiovascular problems. These lifestyle therapies, whether used alongside drug therapy or on their own in patients who may have difficulty tolerating medications, face financial barriers, or experience ineffectiveness, can substantially reduce cardiovascular mortality and the likelihood of recurring cardiac events. Despite the considerable advancements in creating interventions, it is still necessary to determine the optimal intensity, duration, and delivery method for these interventions. Furthermore, it is crucial to carry out further investigations incorporating extended monitoring and assessment of clinical outcomes to get a more comprehensive comprehension of the efficacy of these therapies. Presenting the findings within the framework of "lifestyle medicine," this review seeks to offer a thorough synopsis of the most recent scientific investigations into the potential of behavioral modifications to lower cardiovascular disease risk.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Life Style , Exercise , Diet
6.
Curr Probl Cardiol ; 49(3): 102390, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232927

ABSTRACT

Long non-coding RNAs (lncRNAs) are RNA molecules that regulate gene expression at several levels, including transcriptional, post-transcriptional, and translational. They have a length of more than 200 nucleotides and cannot code. Many human diseases have been linked to aberrant lncRNA expression, highlighting the need for a better knowledge of disease etiology to drive improvements in diagnostic, prognostic, and therapeutic methods. Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. LncRNAs play an essential role in the complex process of heart formation, and their abnormalities have been associated with several CVDs. This Review article looks at the roles and relationships of long non-coding RNAs (lncRNAs) in a wide range of CVDs, such as heart failure, myocardial infarction, atherosclerosis, and cardiac hypertrophy. In addition, the review delves into the possible uses of lncRNAs in diagnostics, prognosis, and clinical treatments of cardiovascular diseases. Additionally, it considers the field's future prospects while examining how lncRNAs might be altered and its clinical applications.


Subject(s)
Cardiovascular Diseases , Heart Failure , Myocardial Infarction , RNA, Long Noncoding , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Prognosis
7.
Curr Gene Ther ; 24(4): 265-277, 2024.
Article in English | MEDLINE | ID: mdl-38284735

ABSTRACT

Gene therapy for hemophilia has advanced tremendously after thirty years of continual study and development. Advancements in medical science have facilitated attaining normal levels of Factor VIII (FVIII) or Factor IX (FIX) in individuals with haemophilia, thereby offering the potential for their complete recovery. Despite the notable advancements in various countries, there is significant scope for further enhancement in haemophilia gene therapy. Adeno-associated virus (AAV) currently serves as the primary vehicle for gene therapy in clinical trials targeting haemophilia. Subsequent investigations will prioritize enhancing viral capsid structures, transgene compositions, and promoters to achieve heightened transduction efficacy, diminished immunogenicity, and more predictable therapeutic results. The present study indicates that whereas animal models have transduction efficiency that is over 100% high, human hepatocytes are unable to express clotting factors and transduction efficiency to comparable levels. According to the current study, achieving high transduction efficiency and high levels of clotting factor expression in human hepatocytes is still insufficient. It is also crucial to reduce the risk of cellular stress caused by protein overload. Despite encountering various hurdles, the field of haemophilia gene therapy holds promise for the future. As technology continues to advance and mature, it is anticipated that a personalized therapeutic approach will be developed to cure haemophilia effectively.


Subject(s)
Dependovirus , Factor IX , Genetic Therapy , Genetic Vectors , Hemophilia A , Humans , Hemophilia A/therapy , Hemophilia A/genetics , Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , Animals , Factor IX/genetics , Factor VIII/genetics , Hepatocytes/metabolism , Transduction, Genetic
8.
Curr Probl Cardiol ; 49(2): 102189, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37956918

ABSTRACT

It is now widely accepted that inflammation is critical in cardiovascular diseases (CVD). Here, studies are being conducted on how cyclic GMP-AMP synthase (cGAS), a component of innate immunity's DNA-sensing machinery, communicates with the STING receptor, which is involved in activating the immune system's antiviral response. Significantly, a growing body of research in recent years highlights the strong activation of the cGAS-STING signalling pathways in several cardiovascular diseases, such as myocardial infarction, heart failure, and myocarditis. This developing collection of research emphasises these pathways' crucial role in initiating and advancing cardiovascular disease. In this extensive narrative, we explore the role of the cGAS-STING pathway in the development of CVD. We elaborate on the basic mechanisms involved in the onset and progression of CVD. This review explores the most recent developments in the recognition and characterization of cGAS-STING pathway. Additionally, it considers the field's future prospects while examining how cGAS-STING pathway might be altered and its clinical applications for cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Humans , Disease Progression , Inflammation , Nucleotidyltransferases/metabolism , Signal Transduction/physiology
9.
Curr Probl Cardiol ; 49(2): 102222, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38000567

ABSTRACT

Patients with preexisting cardiovascular disease or those at high risk for developing the condition are often offered exercise as a form of therapy. Patients with cancer who are at an increased risk for cardiovascular issues are increasingly encouraged to participate in exercise-based, interdisciplinary programs due to the positive correlation between these interventions and clinical outcomes following myocardial infarction. Diabetic cardiomyopathy (DC) is a cardiac disorder that arises due to disruptions in the homeostasis of individuals with diabetes. One of the primary reasons for mortality in individuals with diabetes is the presence of cardiac structural damage and functional abnormalities, which are the primary pathological features of DC. The aetiology of dilated cardiomyopathy is multifaceted and encompasses a range of processes, including metabolic abnormalities, impaired mitochondrial function, dysregulation of calcium ion homeostasis, excessive cardiomyocyte death, and fibrosis. In recent years, many empirical investigations have demonstrated that exercise training substantially impacts the prevention and management of diabetes. Exercise has been found to positively impact the recovery of diabetes and improve several metabolic problem characteristics associated with DC. One potential benefit of exercise is its ability to increase systolic activity, which can enhance cardiometabolic and facilitate the repair of structural damage to the heart caused by DC, leading to a direct improvement in cardiac health. In contrast, exercise has the potential to indirectly mitigate the pathological progression of DC through its ability to decrease circulating levels of sugar and fat while concurrently enhancing insulin sensitivity. A more comprehensive understanding of the molecular mechanism via exercise facilitates the restoration of DC disease must be understood. Our goal in this review was to provide helpful information and clues for developing new therapeutic techniques for motion alleviation DC by examining the molecular mechanisms involved.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Myocardial Infarction , Humans , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/prevention & control , Exercise
10.
Curr Probl Cardiol ; 49(1 Pt B): 102112, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37774899

ABSTRACT

Cardiovascular disease is the leading cause of death, medical complications, and healthcare costs. Although recent advances have been in treating cardiovascular disorders linked with a reduced ejection fraction, acutely decompensate cardiac failure remains a significant medical problem. The transient receptor potential cation channel (TRPC6) family responds to neurohormonal and mechanical stress, playing critical roles in cardiovascular diseases. Therefore, TRP C6 channels have great promise as therapeutic targets. Numerous studies have investigated the roles of TRP C6 channels in pain neurons, highlighting their significance in cardiovascular research. The TRPC6 protein exhibits a broad distribution in various organs and tissues, including the brain, nerves, heart, blood vessels, lungs, kidneys, gastrointestinal tract, and other bodily structures. Its activation can be triggered by alterations in osmotic pressure, mechanical stimulation, and diacylglycerol. Consequently, TRPC6 plays a significant role in the pathophysiological mechanisms underlying diverse diseases within living organisms. A recent study has indicated a strong correlation between the disorder known as TRPC6 and the development of cardiovascular diseases. Consequently, investigations into the association between TRPC6 and cardiovascular diseases have gained significant attention in the scientific community. This review explores the most recent developments in the recognition and characterization of TRPC6. Additionally, it considers the field's prospects while examining how TRPC6 might be altered and its clinical applications.


Subject(s)
Cardiovascular Diseases , TRPC6 Cation Channel , Humans , Lung/metabolism , TRPC Cation Channels/metabolism , TRPC6 Cation Channel/metabolism
11.
Curr Probl Cardiol ; 49(1 Pt B): 102084, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37714318

ABSTRACT

The term "cardiovascular diseases" (CVD) refers to various ailments that affect the heart and blood vessels, including myocardial ischemia, congenital heart defects, heart failure, rheumatic heart disease, hypertension, peripheral artery disease, atherosclerosis, and cardiomyopathies. Despite significant breakthroughs in preventative measures and treatment choices, CVDs significantly contribute to morbidity and mortality, imposing a considerable financial burden. Oxidative stress (OS) is a fundamental contributor to the development and progression of CVDs, resulting from an inherent disparity in generating reactive oxygen species. The disparity above significantly contributes to the aberrant operation of the cardiovascular system. To tackle this issue, therapeutic intervention primarily emphasizes the nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor crucial in regulating endogenous antioxidant defense systems against OS. The Nrf2 exhibits potential as a promising target for effectively managing CVDs. Significantly, an emerging field of study is around the utilization of natural substances to stimulate the activation of Nrf2, hence facilitating the promotion of cardioprotection. This technique introduces a new pathway for treating CVD. The substances above elicit their advantageous effects by mitigating the impact of OS via initiating Nrf2 signaling. The primary objective of our study is to provide significant insights that can contribute to advancing treatment methods, including natural products. These strategies aim to tackle the obstacles associated with CVDs.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/drug therapy , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Antioxidants/therapeutic use , Antioxidants/metabolism , Reactive Oxygen Species/metabolism
12.
Curr Probl Cardiol ; 49(3): 102353, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38128638

ABSTRACT

Cardiovascular disease, particularly coronary heart disease, is becoming more common among those living with HIV. Individuals with HIV face an increased susceptibility to myocardial infarction, also known as a heart attack, as compared to the general population in developed countries. This heightened risk can be attributed mainly to the presence of effective antiretroviral drugs and the resulting longer lifespan. Some cardiac issues linked to non-antiretroviral medications, including myocarditis, endocarditis, cardiomyopathy with dilation, pulmonary hypertension, and oedema of the heart, may affect those not undergoing highly active antiretroviral therapy (ART). Impaired immune function and systemic inflammation are significant contributors to this phenomenon after initiating highly aggressive antiretroviral treatment ART. It is becoming more challenging to determine the best course of treatment for HIV-associated cardiomyopathy due to new research suggesting that protease inhibitors might have a negative impact on the development of HF. Currently, the primary focus of research on ART medications is centered on the cardiovascular adverse effects of nucleoside reverse transcriptase inhibitors and protease inhibitors. This review paper thoroughly evaluates the advancements achieved in cardiovascular disease research and explores the potential implications for prospects. Additionally, it considers the field's future prospects while examining how ART might be altered and its clinical applications.


Subject(s)
Acquired Immunodeficiency Syndrome , Anti-HIV Agents , Cardiomyopathies , Cardiovascular Diseases , HIV Infections , Humans , Anti-HIV Agents/adverse effects , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology , Acquired Immunodeficiency Syndrome/complications , Acquired Immunodeficiency Syndrome/drug therapy , Acquired Immunodeficiency Syndrome/epidemiology , HIV Infections/complications , HIV Infections/drug therapy , Cardiomyopathies/drug therapy , Protease Inhibitors/therapeutic use
13.
Trop Med Int Health ; 28(10): 817-829, 2023 10.
Article in English | MEDLINE | ID: mdl-37705047

ABSTRACT

INTRODUCTION: The World Health Organization recommends regular monitoring of the efficacy of nationally recommended antimalarial drugs. We present the results of studies on the efficacy of recommended antimalarials and molecular markers of artemisinin and partner resistance in Afghanistan, Pakistan, Somalia, Sudan and Yemen. METHODS: Single-arm prospective studies were conducted to evaluate the efficacy of artesunate-sulfadoxine-pyrimethamine (ASSP) in Afghanistan and Pakistan, artemether-lumefantrine (AL) in all countries, or dihydroartemisinin-piperaquine (DP) in Sudan for the treatment of Plasmodium falciparum. The efficacy of chloroquine (CQ) and AL for the treatment of Plasmodium vivax was evaluated in Afghanistan and Somalia, respectively. Patients were treated and monitored for 28 (CQ, ASSP and AL) or 42 (DP) days. Polymerase chain reaction (PCR)-corrected cure rate and parasite positivity rate at Day 3 were estimated. Mutations in the P. falciparum kelch 13 (Pfk13) gene and amplifications of plasmepsin (Pfpm2) and multidrug resistance-1 (Pfmdr-1) genes were also studied. RESULTS: A total of 1680 (249 for ASSP, 1079 for AL and 352 for DP) falciparum cases were successfully assessed. A PCR-adjusted ASSP cure rate of 100% was observed in Afghanistan and Pakistan. For AL, the cure rate was 100% in all but four sites in Sudan, where cure rates ranged from 92.1% to 98.8%. All but one patient were parasite-free at Day 3. For P. vivax, cure rates were 98.2% for CQ and 100% for AL. None of the samples from Afghanistan, Pakistan and Yemen had a Pfk13 mutation known to be associated with artemisinin resistance. In Sudan, the validated Pfk13 R622I mutation accounted for 53.8% (14/26) of the detected non-synonymous Pfk13 mutations, most of which were repeatedly detected in Gadaref. A prevalence of 2.7% and 9.3% of Pfmdr1 amplification was observed in Pakistan and Yemen, respectively. CONCLUSION: High efficacy of ASSP, AL and DP in the treatment of uncomplicated falciparum infection and of CQ and AL in the treatment of P. vivax was observed in the respective countries. The repeated detection of a relatively high rate of Pfk13 R622I mutation in Sudan underscores the need for close monitoring of the efficacy of recommended ACTs, parasite clearance rates and Pfk13 mutations in Sudan and beyond. Registration numbers of the trials: ACTRN12622000944730 and ACTRN12622000873729 for Afghanistan, ACTRN12620000426987 and ACTRN12617001025325 for Pakistan, ACTRN12618001224213 for Somalia, ACTRN12617000276358, ACTRN12622000930785 and ACTRN12618001800213 for Sudan and ACTRN12617000283370 for Yemen.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria, Vivax , Malaria , Humans , Antimalarials/therapeutic use , Antimalarials/pharmacology , Prospective Studies , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemether/therapeutic use , Artemisinins/therapeutic use , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Chloroquine/therapeutic use , Artesunate/therapeutic use , Plasmodium falciparum/genetics , Drug Combinations , Malaria, Vivax/drug therapy , Malaria, Vivax/epidemiology , Drug Resistance/genetics
14.
bioRxiv ; 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37425875

ABSTRACT

The KOLF2.1J iPSC line was recently proposed as a reference iPSC to promote the standardization of research studies in the stem cell field. Due to overall good performance differentiating to neural cell lineages, high gene editing efficiency, and absence of genetic variants associated to neurological disorders KOLF2.1J iPSC line was particularly recommended for neurodegenerative disease modeling. However, our work uncovers that KOLF2.1J hPSCs carry heterozygous small copy number variants (CNVs) that cause DTNBP1, JARID2 and ASTN2 haploinsufficiencies, all of which are associated with neurological disorders. We further determine that these CNVs arose in vitro over the course of KOLF2.1J iPSC generation from a healthy donor-derived KOLF2 iPSC line and affect the expression of DNTBP1, JARID2 and ASTN2 proteins in KOLF2.1J iPSCs and neural progenitors. Therefore, our study suggests that KOLF2.1J iPSCs carry genetic variants that may be deleterious for neural cell lineages. This data is essential for a careful interpretation of neural cell studies derived from KOLF2.1J iPSCs and highlights the need for a catalogue of iPSC lines that includes a comprehensive genome characterization analysis.

15.
Front Immunol ; 14: 1131874, 2023.
Article in English | MEDLINE | ID: mdl-37228619

ABSTRACT

The tumor microenvironment (TME), which includes both cellular and non-cellular elements, is now recognized as one of the major regulators of the development of primary tumors, the metastasis of which occurs to specific organs, and the response to therapy. Development of immunotherapy and targeted therapies have increased knowledge of cancer-related inflammation Since the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCB) limit immune cells from entering from the periphery, it has long been considered an immunological refuge. Thus, tumor cells that make their way "to the brain were believed to be protected from the body's normal mechanisms of monitoring and eliminating them. In this process, the microenvironment and tumor cells at different stages interact and depend on each other to form the basis of the evolution of tumor brain metastases. This paper focuses on the pathogenesis, microenvironmental changes, and new treatment methods of different types of brain metastases. Through the systematic review and summary from macro to micro, the occurrence and development rules and key driving factors of the disease are revealed, and the clinical precision medicine of brain metastases is comprehensively promoted. Recent research has shed light on the potential of TME-targeted and potential treatments for treating Brain metastases, and we'll use that knowledge to discuss the advantages and disadvantages of these approaches.


Subject(s)
Brain Neoplasms , Tumor Microenvironment , Humans , Brain Neoplasms/pathology , Brain/pathology , Blood-Brain Barrier/pathology , Immunotherapy/adverse effects
16.
Front Immunol ; 14: 1166487, 2023.
Article in English | MEDLINE | ID: mdl-37138860

ABSTRACT

In the last ten years, it has become increasingly clear that tumor-infiltrating myeloid cells drive not just carcinogenesis via cancer-related inflammatory processes, but also tumor development, invasion, and metastasis. Tumor-associated macrophages (TAMs) in particular are the most common kind of leucocyte in many malignancies and play a crucial role in establishing a favorable microenvironment for tumor cells. Tumor-associated macrophage (TAM) is vital as the primary immune cell subset in the tumor microenvironment (TME).In order to proliferate and spread to new locations, tumors need to be able to hide from the immune system by creating an immune-suppressive environment. Because of the existence of pro-tumoral TAMs, conventional therapies like chemotherapy and radiotherapy often fail to restrain cancer growth. These cells are also to blame for the failure of innovative immunotherapies premised on immune-checkpoint suppression. Understanding the series of metabolic changes and functional plasticity experienced by TAMs in the complex TME will help to use TAMs as a target for tumor immunotherapy and develop more effective tumor treatment strategies. This review summarizes the latest research on the TAMs functional status, metabolic changes and focuses on the targeted therapy in solid tumors.


Subject(s)
Neoplasms , Tumor-Associated Macrophages , Humans , Tumor-Associated Macrophages/pathology , Macrophages , Immunotherapy , Carcinogenesis/metabolism , Tumor Microenvironment
17.
J Neurodev Disord ; 15(1): 14, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37120522

ABSTRACT

BACKGROUND: Neurodevelopmental disorders (NDDs), such as attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), are examples of complex and partially overlapping phenotypes that often lack definitive corroborating genetic information. ADHD and ASD have complex genetic associations implicated by rare recurrent copy number variations (CNVs). Both of these NDDs have been shown to share similar biological etiologies as well as genetic pleiotropy. METHODS: Platforms aimed at investigating genetic-based associations, such as high-density microarray technologies, have been groundbreaking techniques in the field of complex diseases, aimed at elucidating the underlying disease biology. Previous studies have uncovered CNVs associated with genes within shared candidate genomic networks, including glutamate receptor genes, across multiple different NDDs. To examine shared biological pathways across two of the most common NDDs, we investigated CNVs across 15,689 individuals with ADHD (n = 7920), ASD (n = 4318), or both (n = 3,416), as well as 19,993 controls. Cases and controls were matched by genotype array (i.e., Illumina array versions). Three case-control association studies each calculated and compared the observed vs. expected frequency of CNVs across individual genes, loci, pathways, and gene networks. Quality control measures of confidence in CNV-calling, prior to association analyses, included visual inspection of genotype and hybridization intensity. RESULTS: Here, we report results from CNV analysis in search for individual genes, loci, pathways, and gene networks. To extend our previous observations implicating a key role of the metabotropic glutamate receptor (mGluR) network in both ADHD and autism, we exhaustively queried patients with ASD and/or ADHD for CNVs associated with the 273 genomic regions of interest within the mGluR gene network (genes with one or two degrees protein-protein interaction with mGluR 1-8 genes). Among CNVs in mGluR network genes, we uncovered CNTN4 deletions enriched in NDD cases (P = 3.22E - 26, OR = 2.49). Additionally, we uncovered PRLHR deletions in 40 ADHD cases and 12 controls (P = 5.26E - 13, OR = 8.45) as well as clinically diagnostic relevant 22q11.2 duplications and 16p11.2 duplications in 23 ADHD + ASD cases and 9 controls (P = 4.08E - 13, OR = 15.05) and 22q11.2 duplications in 34 ADHD + ASD cases and 51 controls (P = 9.21E - 9, OR = 3.93); those control samples were not with previous 22qDS diagnosis in their EHR records. CONCLUSION: Together, these results suggest that disruption in neuronal cell-adhesion pathways confers significant risk to NDDs and showcase that rare recurrent CNVs in CNTN4, 22q11.2, and 16p11.2 are overrepresented in NDDs that constitute patients predominantly suffering from ADHD and ASD. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02286817 First Posted: 10 November 14, ClinicalTrials.gov Identifier: NCT02777931 first posted: 19 May 2016, ClinicalTrials.gov Identifier: NCT03006367 first posted: 30 December 2016, ClinicalTrials.gov Identifier: NCT02895906 first posted: 12 September 2016.


Subject(s)
Autism Spectrum Disorder , Receptors, Metabotropic Glutamate , Humans , Autism Spectrum Disorder/genetics , DNA Copy Number Variations/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Receptors, Metabotropic Glutamate/genetics
18.
Front Mol Biosci ; 10: 1121964, 2023.
Article in English | MEDLINE | ID: mdl-36825203

ABSTRACT

Legumain (LGMN) has been demonstrated to be overexpressed not just in breast, prostatic, and liver tumor cells, but also in the macrophages that compose the tumor microenvironment. This supports the idea that LGMN is a pivotal protein in regulating tumor development, invasion, and dissemination. Targeting LGMN with siRNA or chemotherapeutic medicines and peptides can suppress cancer cell proliferation in culture and reduce tumor growth in vivo. Furthermore, legumain can be used as a marker for cancer detection and targeting due to its expression being significantly lower in normal cells compared to tumors or tumor-associated macrophages (TAMs). Tumor formation is influenced by aberrant expression of proteins and alterations in cellular architecture, but the tumor microenvironment is a crucial deciding factor. Legumain (LGMN) is an in vivo-active cysteine protease that catalyzes the degradation of numerous proteins. Its precise biological mechanism encompasses a number of routes, including effects on tumor-associated macrophage and neovascular endothelium in the tumor microenvironment. The purpose of this work is to establish a rationale for thoroughly investigating the function of LGMN in the tumor microenvironment and discovering novel tumor early diagnosis markers and therapeutic targets by reviewing the function of LGMN in tumor genesis and progression and its relationship with tumor milieu.

19.
Curr Gene Ther ; 23(2): 135-147, 2023.
Article in English | MEDLINE | ID: mdl-36200188

ABSTRACT

Gene therapy has proven to be extremely beneficial in the management of a wide range of genetic disorders for which there are currently no or few effective treatments. Gene transfer vectors are very significant in the field of gene therapy. It is possible to attach a non-viral attachment vector to the donor cell chromosome instead of integrating it, eliminating the negative consequences of both viral and integrated vectors. It is a safe and optimal express vector for gene therapy because it does not cause any adverse effects. However, the modest cloning rate, low expression, and low clone number make it unsuitable for use in gene therapy. Since the first generation of non-viral attachment episomal vectors was constructed, various steps have been taken to regulate their expression and stability, such as truncating the MAR element, lowering the amount of CpG motifs, choosing appropriate promoters and utilizing regulatory elements. This increases the transfection effectiveness of the non-viral attachment vector while also causing it to express at a high level and maintain a high level of stability. A vector is a genetic construct commonly employed in gene therapy to treat various systemic disorders. This article examines the progress made in the development of various optimization tactics for nonviral attachment vectors and the future applications of these vectors in gene therapy.


Subject(s)
Genetic Therapy , Genetic Vectors , Genetic Vectors/genetics , Plasmids/genetics , Transfection , Matrix Attachment Regions , Gene Transfer Techniques
20.
Chem Asian J ; 18(1): e202201050, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36342176

ABSTRACT

This study demonstrates the superiority of a stable and well-defined heterogeneous cobalt hexacyanocobaltate (Co3 [Co(CN)6 ]2 ), a typical cobalt Prussian Blue Analogue (CoCo-PBA) that catalyzes the copolymerization of carbonyl sulfide (COS) and propylene oxide (PO) to produce poly(propylene monothiocarbonate)s (PPMTC). The number-average molecular weights of the PPMTC were 66.4 to 139.4 kg/mol, with a polydispersity of 2.0-3.9. The catalyst productivity reached 1040 g polymer/g catalyst (12.0 h). The oxygen-sulfur exchange reaction (O/S ER), which would generate random thiocarbonate and carbonate units, was effectively suppressed, and thus the selectivity of the monothiocarbonate over carbonate linkages was up to >99%. It was shown that no cyclic thiocarbonate byproduct was produced during the heterogeneous catalysis of COS/PO copolymerization using CoCo-PBA as the catalyst. The content of monothiocarbonate and ether units in the copolymer chain could be regulated by tuning the feeding amount of COS.


Subject(s)
Cobalt , Polymers , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...