Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Phys Ther Res ; 26(2): 39-43, 2023.
Article in English | MEDLINE | ID: mdl-37621571

ABSTRACT

OBJECTIVE: The purpose of this review was to evaluate the efficacy of rehabilitation strategies in animal models of stroke and their correlation with human stroke studies. METHODS: General description of a stroke, functional recovery, and rehabilitation modalities were included from published studies in the field of animal models of cerebral ischemia and ischemia-reperfusion. RESULTS: In stroke survivors, rehabilitation plays a significant role to improve motor function, cognition, and other subtle behaviors. Targeted pharmacological agents, including neuroprotective drugs, are helpful in animal models of stroke. However, no drug has yet been found that meets the criteria that would make it the Food and Drug Administration-approved treatment for human stroke. Instead, the rehabilitation of stroke in humans is limited to physical and occupational therapy, speech therapy, environmental enrichment, and social activities, as well as spiritual and family support. CONCLUSION: Studies on stroke injury and the significance of stroke animals' rehabilitation, including physical and pharmacological, approaches are highlighted.

2.
Neural Regen Res ; 17(1): 185-193, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34100455

ABSTRACT

Spinal cord injury (SCI) is associated with high production and excessive accumulation of pathological 4-hydroxy-trans-2-nonenal (4-HNE), a reactive aldehyde, formed by SCI-induced metabolic dysregulation of membrane lipids. Reactive aldehyde load causes redox alteration, neuroinflammation, neurodegeneration, pain-like behaviors, and locomotion deficits. Pharmacological scavenging of reactive aldehydes results in limited improved motor and sensory functions. In this study, we targeted the activity of mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) to detoxify 4-HNE for accelerated functional recovery and improved pain-like behavior in a male mouse model of contusion SCI. N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1), a selective activator of ALDH2, was used as a therapeutic tool to suppress the 4-HNE load. SCI was induced by an impactor at the T9-10 vertebral level. Injured animals were initially treated with Alda-1 at 2 hours after injury, followed by once-daily treatment with Alda-1 for 30 consecutive days. Locomotor function was evaluated by the Basso Mouse Scale, and pain-like behaviors were assessed by mechanical allodynia and thermal algesia. ALDH2 activity was measured by enzymatic assay. 4-HNE protein adducts and enzyme/protein expression levels were determined by western blot analysis and histology/immunohistochemistry. SCI resulted in a sustained and prolonged overload of 4-HNE, which parallels with the decreased activity of ALDH2 and low functional recovery. Alda-1 treatment of SCI decreased 4-HNE load and enhanced the activity of ALDH2 in both the acute and the chronic phases of SCI. Furthermore, the treatment with Alda-1 reduced neuroinflammation, oxidative stress, and neuronal loss and increased adenosine 5'-triphosphate levels stimulated the neurorepair process and improved locomotor and sensory functions. Conclusively, the results provide evidence that enhancing the ALDH2 activity by Alda-1 treatment of SCI mice suppresses the 4-HNE load that attenuates neuroinflammation and neurodegeneration, promotes the neurorepair process, and improves functional outcomes. Consequently, we suggest that Alda-1 may have therapeutic potential for the treatment of human SCI. Animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of MUSC (IACUC-2019-00864) on December 21, 2019.

3.
Immunology ; 164(3): 602-616, 2021 11.
Article in English | MEDLINE | ID: mdl-34310708

ABSTRACT

Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase (NOS) inhibitor/uncoupler inducing vascular pathology. Vascular pathology is an important factor for the development and progression of CNS pathology of MS, yet the role of ADMA in MS remains elusive. Patients with multiple sclerosis (MS) are reported to have elevated blood levels of ADMA, and mice with experimental autoimmune encephalomyelitis (EAE, an animal model of MS) generated by auto-immunization of myelin oligodendrocyte glycoprotein (MOG) and blood-brain barrier (BBB) disruption by pertussis toxin also had increased blood ADMA levels in parallel with induction of clinical disease. To explore the role of ADMA in EAE pathogenesis, EAE mice were treated with a daily dose of ADMA. It is of special interest that ADMA treatment enhanced the BBB disruption in EAE mice and exacerbated the clinical and CNS disease of EAE. ADMA treatment also induced the BBB disruption and EAE disease in MOG-immunized mice even without pertussis toxin treatment, suggesting the role of ADMA in BBB dysfunction in EAE. T-cell polarization studies also documented that ADMA treatment promotes TH 1- and TH 17-mediated immune responses but without affecting Treg-mediated immune response in EAE mice as well as in in vitro T-cell culture. Taken together, these data, for the first time, document the vascular and immunopathogenic roles of ADMA in EAE, thus pointing to the potential of ADMA-mediated mechanism as a new target of potential therapy for MS.


Subject(s)
Arginine/analogs & derivatives , Blood-Brain Barrier/pathology , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Animals , Arginine/metabolism , Blood-Brain Barrier/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Mice , Multiple Sclerosis/pathology , Myelin-Oligodendrocyte Glycoprotein/administration & dosage , Myelin-Oligodendrocyte Glycoprotein/immunology , Pertussis Toxin/administration & dosage , Pertussis Toxin/immunology
4.
Redox Biol ; 45: 102053, 2021 09.
Article in English | MEDLINE | ID: mdl-34175668

ABSTRACT

B cells play both protective and pathogenic roles in T cell-mediated autoimmune diseases by releasing regulatory vs. pathogenic cytokines. B cell-depleting therapy has been attempted in various autoimmune diseases but its efficacy varies and can even worsen symptoms due to depletion of B cells releasing regulatory cytokines along with B cells releasing pathogenic cytokines. Here, we report that S-nitrosoglutathione (GSNO) and GSNO-reductase (GSNOR) inhibitor N6022 drive upregulation of regulatory cytokine (IL-10) and downregulation of pathogenic effector cytokine (IL-6) in B cells and protected against the neuroinflammatory disease of experimental autoimmune encephalomyelitis (EAE). In human and mouse B cells, the GSNO/N6022-mediated regulation of IL-10 vs. IL-6 was not limited to regulatory B cells but also to a broad range of B cell subsets and antibody-secreting cells. Adoptive transfer of B cells from N6022 treated EAE mice or EAE mice deficient in the GSNOR gene also regulated T cell balance (Treg > Th17) and reduced clinical disease in the recipient EAE mice. The data presented here provide evidence of the role of GSNO in shifting B cell immune balance (IL-10 > IL-6) and the preclinical relevance of N6022, a first-in-class drug targeting GSNOR with proven human safety, as therapeutics for autoimmune disorders including multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Animals , B-Lymphocytes , Cytokines , Encephalomyelitis, Autoimmune, Experimental/genetics , Mice , Mice, Inbred C57BL , S-Nitrosoglutathione
5.
Immunology ; 164(1): 31-42, 2021 09.
Article in English | MEDLINE | ID: mdl-33813735

ABSTRACT

Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric (HIF-1α/ HIF-1ß) transcription factor in which the oxygen-sensitive HIF-1α subunit regulates gene transcription to mediate adaptive tissue responses to hypoxia. HIF-1 is a key mediator in both regulatory and pathogenic immune responses, because ongoing inflammation in localized tissues causes increased oxygen consumption and consequent hypoxia within the inflammatory lesions. In autoimmune diseases, HIF-1 plays complex and divergent roles within localized inflammatory lesions by orchestrating a critical immune interplay sponsoring the pathogenesis of the disease. In this review, we have summarized the role of HIF-1 in lymphoid and myeloid immunomodulation in autoimmune diseases. HIF-1 drives inflammation by controlling the Th17/Treg /Tr1 balance through the tipping of the differentiation of CD4+ T cells in favour of pro-inflammatory Th17 cells while suppressing the development of anti-inflammatory Treg /Tr1 cells. On the other hand, HIF-1 plays a protective role by facilitating the expression of anti-inflammatory cytokine IL-10 in and expansion of CD1dhi CD5+ B cells, known as regulatory B cells or B10 cells. Apart from lymphoid cells, HIF-1 also controls the activation of macrophages, neutrophils and dendritic cells, thus eventually further influences the activation and development of effector/regulatory T cells by facilitating the creation of a pro/anti-inflammatory microenvironment within the autoinflammatory lesions. Based on the critical immunomodulatory roles that HIF-1 plays, this master transcription factor seems to be a potent druggable target for the treatment of autoimmune diseases.


Subject(s)
Autoimmune Diseases/metabolism , Hypoxia-Inducible Factor 1/metabolism , Hypoxia/metabolism , Inflammation/metabolism , Lymphocytes/immunology , Myeloid Cells/immunology , Th17 Cells/immunology , Animals , Cell Differentiation , Cellular Microenvironment , Humans
6.
Brain Res ; 1758: 147335, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33545099

ABSTRACT

Traumatic spinal cord injury (SCI) enhances the activity of S-nitrosoglutathione reductase (GSNOR) and inhibits the mitochondrial aldehyde dehydrogenase 2 (ALDH2) activity, resulting in prolonged and sustained pain and functional deficits. This study's objective was to test the hypotheses that GSNOR's specific inhibitor N6022 mitigates pain and improves functional recovery in a mouse model of SCI. Furthermore, the degree of recovery is enhanced and the rate of recovery is accelerated by an ALDH2 activator Alda-1. Using both wild-type and GSNOR-/- mice, the SCI model deployed for groups was contusion at the T9-T10 vertebral level. The enzymatic activity of GSNOR and ALDH2 was measured, and the expression of GSNOR and ALDH2 was determined by western blot analysis. Functional improvements in experimental animals were assessed with locomotor, sensorimotor, and pain-like behavior tests. Wild-type SCI animals had enhanced GSNOR activity and decreased ALDH2 activity, leading to neurovascular dysfunction, edema, and worsened functional outcomes, including locomotor deficits and pain. Compared to wild-type SCI mice, GSNOR-/- mice had better functional outcomes. Monotherapy with either GSNOR inhibition by N6022 or enhanced ALDH2 activity by Alda-1 correlated well with functional recovery and lessened pain. However, combination therapy provided synergistic pain-relieving effects and more significant functional recovery compared with monotherapy. Conclusively, dysregulations in GSNOR and ALDH2 are among the causative mechanisms of SCI injury. Either inhibiting GSNOR or activating ALDH2 ameliorates SCI. Combining the specific inhibitor of GSNOR (N6022) with the selective activator of ALDH2 (Alda-1) provides greater protection to the neurovascular unit and confers greater functional recovery. The study is novel, and the combination therapy (N6022 + Alda-1) possesses translational potential.


Subject(s)
Alcohol Dehydrogenase/metabolism , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Recovery of Function/drug effects , Recovery of Function/physiology , Spinal Cord Injuries/enzymology , Animals , Benzamides/pharmacology , Benzodioxoles/pharmacology , Enzyme Inhibitors/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pyrroles/pharmacology
7.
Neuroscience ; 458: 31-42, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33493617

ABSTRACT

Reactive aldehydes are generated as a toxic end-product of lipid peroxidation under inflammatory oxidative stress condition which is a well-established phenomenon in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Alda-1, a selective agonist of mitochondrial aldehyde dehydrogenase 2 (ALDH2), is known to detoxify the reactive aldehydes. In this study, we investigated the effect of Alda-1 on CNS myelin pathology associated with reactive aldehydes and mitochondrial/peroxisomal dysfunctions in a mouse model of EAE. Daily treatment of EAE mice with Alda-1, starting at the peak of disease, ameliorated the clinical manifestation of disease along with the improvement of motor functions. Accordingly, Alda-1 treatment improved demyelination and neuroaxonal degeneration in EAE mice. EAE mice had increased levels of reactive aldehyde species, such as 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), and acrolein (ACL) in the spinal cords and these levels were significantly reduced in Alda-1-treated EAE mice. Furthermore, Alda-1 treatment improved the loss of mitochondrial (OXPHOS) and peroxisomal (PMP70 and catalase) proteins as well as mitochondrial/peroxisomal proliferation factors (PGC-1α and PPARs) in the spinal cords of EAE mice. Taken together, this study demonstrates the therapeutic efficacy of ALDH2-agonist Alda-1 in the abatement of EAE disease through the detoxification of reactive aldehydes, thus suggesting Alda-1 as a potential therapeutic intervention for MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Aldehyde Dehydrogenase, Mitochondrial , Aldehydes , Animals , Benzamides , Benzodioxoles , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Mice , Mice, Inbred C57BL
9.
Brain Res ; 1741: 146879, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32418890

ABSTRACT

The nitric oxide (NO) metabolome and the NO metabolite-based neurovascular protective pathways are dysregulated after stroke. The major NO metabolite S-nitrosoglutahione (GSNO) is essential for S-nitrosylation-based signaling events and the inhibition of S-nitrosoglutahione (GSNO)-metabolizing enzyme GSNO reductase (GSNOR) provides protective effects following cardiac ischemia. However, the role of GSNOR and GSNOR inhibition-mediated increased GSNO/S-nitrosylation is not understood in neurovascular diseases such as stroke. Because age is the major risk factor of stroke and recovery in aged stroke patients is low and slow, we investigated the efficacy of GSNOR inhibition using a GSNOR selective inhibitor N6022 in a clinically relevant middle-aged cerebral ischemia and reperfusion (IR) mouse model of stroke. N6022 (5 mg/kg; iv) treatment of IR mice at 2 h after reperfusion followed by the treatment of the same dose daily for 3 days reduced the infarct volume and decreased the neurological score. Daily treatment of IR animals with N6022 for 2 weeks significantly improved neurological score, brain infarctions/atrophy, survival rate, motor (measured by cylinder test) and cognitive (evaluated by novel object recognition test) functions which paralleled the decreased activity of GSNOR, reduced levels of peroxynitrite and decreased neurological score. These results are the first evidence of a new pathway for the treatment of stroke via the inhibition of GSNOR. Based on the efficacy of N6022 in the stroke animal model and its use in human therapeutic studies without toxicity, we submit that GSNOR is a druggable target, and N6022 is a promising drug candidate for human stroke therapy.


Subject(s)
Aging/drug effects , Alcohol Dehydrogenase/antagonists & inhibitors , Benzamides/administration & dosage , Disease Models, Animal , Pyrroles/administration & dosage , Recovery of Function/drug effects , Stroke/drug therapy , Aging/metabolism , Alcohol Dehydrogenase/metabolism , Animals , Drug Delivery Systems/methods , Male , Mice , Mice, Inbred C57BL , Recovery of Function/physiology , Stroke/metabolism , Stroke/pathology
10.
FASEB J ; 34(5): 6808-6823, 2020 05.
Article in English | MEDLINE | ID: mdl-32239698

ABSTRACT

Asymmetric dimethylarginine (ADMA), an endogenous inhibitor and uncoupler of nitric oxide synthase, has gained attention as a risk factor for cardiac disease, metabolic syndrome, and cerebrovascular disease. In this study, we investigated the role of systemic ADMA overburden in cerebromicrovascular pathology associated with cognitive dysfunction using APPSwDI transgenic mice expressing human ß-amyloid precursor protein Swedish (Tg-SwDI), a model of cerebrovascular ß-amyloidosis. To induce systemic overburden of ADMA, Tg-SwDI mice were treated with a daily dose of exogenous ADMA. ADMA treatment resulted in elevated ADMA levels in the blood and brain of Tg-SwDI mice. ADMA treatment induced the brain nitrosative stress and inflammation as well as enhanced the brain Aß deposition and cognitive impairment in Tg-SwDI mice. However, ADMA treatment had no such effects on wild type mice. ADMA treatment also exacerbated brain microvascular pathology in Tg-SwDI mice as observed by increased blood-brain barrier dysfunction, loss of tight junction proteins, increased endothelial stress fibers, and decreased microvessel density in the brain. In addition, similar observations were made in cultured human brain microvessel endothelial cells, where ADMA in the presence of VEGF-induced endothelial cell signaling for F-actin stress fiber inducing endothelial barrier dysfunction. Overall, these data document the potential role of ADMA in the cognitive pathology under conditions of cerebrovascular ß-amyloidosis.


Subject(s)
Amyloid beta-Protein Precursor/physiology , Arginine/analogs & derivatives , Cerebrovascular Disorders/physiopathology , Cognitive Dysfunction/pathology , Endothelium, Vascular/pathology , Enzyme Inhibitors/toxicity , Animals , Arginine/blood , Arginine/toxicity , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Enzyme Inhibitors/blood , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
11.
Ann Hepatol ; 19(5): 466-471, 2020.
Article in English | MEDLINE | ID: mdl-31870746

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a form of fatty liver disease where benign hepatic steatosis leads to chronic inflammation in the steatotic liver of a patient without any history of alcohol abuse. Mechanisms underlying the progression of hepatic steatosis to NASH have long been investigated. This review outlines the potential role of peroxisomal dysfunctions in exacerbating the disease in NASH. Loss of peroxisomes as well as impaired peroxisomal functions have been demonstrated to occur in inflammatory conditions including NASH. Because peroxisomes and mitochondria co-operatively perform many metabolic functions including O2 and lipid metabolisms, a compromised peroxisomal biogenesis and function can potentially contribute to defective lipid and reactive oxygen species metabolism which in turn can lead the progression of disease in NASH. Impaired peroxisomal biogenesis and function may be due to the decreased expression of peroxisomal proliferator-activated receptor-α (PPAR-α), the major transcription factor of peroxisomal biogenesis. Recent studies indicate that the reduced expression of PPAR-α in NASH is correlated with the activation of the toll-like receptor-4 pathway (TLR-4). Further investigations are required to establish the mechanistic connection between the TLR-4 pathway and PPAR-α-dependent impaired biogenesis/function of peroxisomes in NASH.


Subject(s)
Liver/pathology , Non-alcoholic Fatty Liver Disease/pathology , Organelle Biogenesis , Peroxisomes/pathology , Animals , Disease Progression , Humans , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/metabolism , Peroxisomes/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism
12.
J Stroke Cerebrovasc Dis ; 28(12): 104470, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31680031

ABSTRACT

BACKGROUND: The nitric oxide (NO)-producing activity of endothelial nitric oxide synthase (eNOS) plays a significant role in maintaining endothelial function and protecting against the stroke injury. However, the activity of the eNOS enzyme and the metabolism of major NO metabolite S-nitrosoglutathione (GSNO) are dysregulated after stroke, causing endothelial dysfunction. We investigated whether an administration of exogenous of GSNO or enhancing the level of endogenous GSNO protects against neurovascular injury in wild-type (WT) and eNOS-null (endothelial dysfunction) mouse models of cerebral ischemia-reperfusion (IR). METHODS: Transient cerebral ischemic injury was induced by middle cerebral artery occlusion (MCAO) for 60 minutes in male adult WT and eNOS null mice. GSNO (0.1 mg/kg body weight, intravenously) or N6022 (GSNO reductase inhibitor, 5.0 mg/kg body weight, intravenously) was administered 30 minutes before MCAO in preinjury and at the reperfusion in postinjury studies. Brain infarctions, edema, and neurobehavioral functions were evaluated at 24 hours after the reperfusion. RESULTS: eNOS-null mice had a higher degree (P< .05) of injury than WT. Pre- or postinjury treatment with either GSNO or N6022 significantly reduced infarct volume, improved neurological and sensorimotor function in both WT and eNOS-null mice. CONCLUSION: Reduced brain infarctions and edema, and improved neurobehavioral functions by pre- or postinjury GSNO treatment of eNOS knock out mice indicate that GSNO can attenuate IR injury, likely by mimicking the eNOS-derived NO-dependent anti-ischemic and anti-inflammatory functions. Neurovascular protection by GSNO/N6022 in both pre- and postischemic injury groups support GSNO as a promising drug candidate for the prevention and treatment of stroke injury.


Subject(s)
Alcohol Dehydrogenase/antagonists & inhibitors , Benzamides/pharmacology , Brain/drug effects , Enzyme Inhibitors/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/pharmacology , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Pyrroles/pharmacology , S-Nitrosoglutathione/pharmacology , Alcohol Dehydrogenase/metabolism , Animals , Behavior, Animal/drug effects , Brain/embryology , Brain/pathology , Brain Edema/enzymology , Brain Edema/pathology , Brain Edema/prevention & control , Disease Models, Animal , Infarction, Middle Cerebral Artery/enzymology , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type III/deficiency , Nitric Oxide Synthase Type III/genetics
14.
Nitric Oxide ; 83: 51-64, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30590116

ABSTRACT

Nitric oxide (NO) synthesized by eNOS plays a key role in regulation of endothelial barrier integrity but underlying cell signaling pathway is not fully understood at present. Here, we report opposing roles of two different redox-dependent NO metabolites; peroxynitrite (ONOO-) vs. S-nitrosoglutathione (GSNO), in cell signaling pathways for endothelial barrier disruption. In cultured human brain microvessel endothelial cells (hBMVECs), thrombin induced F-actin stress fiber formation causes barrier disruption via activating eNOS. Thrombin induced eNOS activity participated in cell signaling (e.g. RhoA and calcium influx mediated phosphorylation of myosin light chain) for F-actin stress fiber formation by increasing ONOO- levels. On the other hand, thrombin had no effect on intracellular levels of S-nitrosoglutathione (GSNO), another cellular NO metabolite. However, exogenous GSNO treatment attenuated the thrombin-induced cell signaling pathways for endothelial barrier disruption, thus suggesting the role of a shift of NO metabolism (GSNO vs. ONOO-) toward ONOO- synthesis in cell signaling for endothelial barrier disruption. Consistent with these in vitro studies, in animal models of traumatic brain injury and experimental autoimmune encephalomyelitis (EAE), ONOO- scavenger treatment as well as GSNO treatment were effective for attenuation of BBB leakage, edema formation, and CNS infiltration of mononuclear cells. Taken together, these data document that eNOS-mediated NO production and following redox-dependent NO metabolites (ONOO- vs. GSNO) are potential therapeutic target for CNS microvascular disease (traumatic and inflammatory) pathologies.


Subject(s)
Brain Injuries, Traumatic/metabolism , Endothelial Cells/metabolism , Inflammation/metabolism , Nitric Oxide/metabolism , Signal Transduction , Cells, Cultured , Humans , Oxidation-Reduction
15.
BMC Neurosci ; 19(1): 50, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30103682

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) is one of the leading causes of disability and chronic pain. In SCI-induced pathology, homeostasis of the nitric oxide (NO) metabolome is lost. Major NO metabolites such as S-nitrosoglutathione (GSNO) and peroxynitrite are reported to play pivotal roles in regulating the activities of key cysteine proteases, calpains. While peroxynitrite (a metabolite of NO and superoxide) up regulates the activities of calpains leading to neurodegeneration, GSNO (a metabolite of NO and glutathione) down regulates the activities of calpains leading to neuroprotection. In this study, effect of GSNO on locomotor function and pain threshold and their relationship with the levels of peroxynitrite and the activity of calpain in the injured spinal cord were investigated using a 2-week rat model of contusion SCI. RESULTS: SCI animals were initially treated with GSNO at 2 h after the injury followed by a once daily dose of GSNO for 14 days. Locomotor function was evaluated by "Basso Beattie and Bresnahan (BBB) locomotor rating scale" and pain by mechanical allodynia. Peroxynitrite level, as expression of 3-nitrotyrosine (3-NT), calpain activity, as the degradation products of calpain substrate alpha II spectrin, and nNOS activity, as the expression phospho nNOS, were measured by western blot analysis. Treatment with GSNO improved locomotor function and mitigated pain. The treatment also reduced the levels of peroxynitrite (3-NT) and decreased activity of calpains. Reduced levels of peroxynitrite resulted from the GSNO-mediated inhibition of aberrant activity of neuronal nitric oxide synthase (nNOS). CONCLUSIONS: The data indicates that higher levels of 3-NT and aberrant activities of nNOS and calpains correlated with SCI pathology and functional deficits. Treatment with GSNO improved locomotor function and mitigated mechanical allodynia acutely post-injury. Because GSNO shows potential to ameliorate experimental SCI, we discuss implications for GSNO therapy in clinical SCI research.


Subject(s)
Calpain/metabolism , Nitrosoguanidines/pharmacology , Peroxynitrous Acid/metabolism , Recovery of Function/drug effects , Spinal Cord Injuries/drug therapy , Animals , Brain/drug effects , Disease Models, Animal , Male , Neurons/drug effects , Neuroprotective Agents/pharmacology , Nitric Oxide Synthase Type I/drug effects , Rats, Sprague-Dawley
16.
J Neurosci Res ; 96(12): 1900-1913, 2018 12.
Article in English | MEDLINE | ID: mdl-30027580

ABSTRACT

Traumatic brain injury (TBI) is the major cause of physical disability and emotional vulnerability. Treatment of TBI is lacking due to its multimechanistic etiology, including derailed mitochondrial and cellular energy metabolism. Previous studies from our laboratory show that an endogenous nitric oxide (NO) metabolite S-nitrosoglutathione (GSNO) provides neuroprotection and improves neurobehavioral function via anti-inflammatory and anti-neurodegenerative mechanisms. To accelerate the rate and enhance the degree of recovery, we investigated combining GSNO with caffeic acid phenethyl ester (CAPE), a potent antioxidant compound, using a male mouse model of TBI, controlled cortical impact in mice. The combination therapy accelerated improvement of cognitive and depressive-like behavior compared with GSNO or CAPE monotherapy. Separately, both GSNO and CAPE improved mitochondrial integrity/function and decreased oxidative damage; however, the combination therapy had greater effects on Drp1 and MnSOD. Additionally, while CAPE alone activated AMPK, this activation was heightened in combination with GSNO. CAPE treatment of normal animals also significantly increased the expression levels of pAMPK, pACC (activation of AMPK substrate ACC), and pLKB1 (activation of upstream to AMPK kinase LKB1), indicating that CAPE activates AMPK via LKB1. These results show that while GSNO and CAPE provide neuroprotection and improve functional recovery separately, the combination treatment invokes greater recovery by significantly improving mitochondrial functions and activating the AMPK enzyme. Both GSNO and CAPE are in human consumption without any known adverse effects; therefore, a combination therapy-based multimechanistic approach is worthy of investigation in human TBI.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Caffeic Acids/pharmacology , Phenylethyl Alcohol/analogs & derivatives , S-Nitrosoglutathione/pharmacology , AMP-Activated Protein Kinases/metabolism , Amino Acid Oxidoreductases/metabolism , Animals , Antioxidants/metabolism , Behavior Rating Scale , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Drug Synergism , Dynamins/metabolism , GTP Phosphohydrolases/metabolism , Heme Oxygenase-1/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Neurons/drug effects , Neuroprotective Agents/pharmacology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phenylethyl Alcohol/pharmacology , Protein Serine-Threonine Kinases/metabolism , Superoxide Dismutase/metabolism
17.
Curr Drug Targets ; 19(15): 1831-1838, 2018.
Article in English | MEDLINE | ID: mdl-29437005

ABSTRACT

BACKGROUND: Cell signaling through nitric oxide (NO) is a multifaceted mechanism, which regulates metabolic activities and fate in different tissues. The peroxynitrite (ONOO-) formed as reaction product of nitric oxide radical and superoxide interacts with cell membrane phospholipids and proteins causing damage. OBJECTIVE: The reaction kinetics to form nitrotyrosine (ONOO-tyrosine) and/or nitrosylated cysteine (ONOO-cysteine) in protein molecules during posttranslational modification and nitration of lipids are therefore critical in determining cells' signaling mechanism for survival or apoptosis. RESULTS: The nitrosylation was found to modulate GPCRs and activation of guanylate cyclase as well as regulate NF-κB activation. The recent findings have shown the neuroprotective effects of S- nitrosylation, though mechanism is unclear. CONCLUSION: While keeping the background in mind, we address here the biological function of NO derivatives in medicine. We target four known compounds: SNAP, SIN- 1 chloride, SNP and GSNO to understand the effect of NO in different tissues. Here we analyze the existing findings to assess therapeutic relevance of NO-signaling during inflammation, vasodilation and tolerance.


Subject(s)
Guanylate Cyclase/metabolism , Inflammation/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Receptors, G-Protein-Coupled/metabolism , Gene Expression Regulation , Humans , Lipids/chemistry , Peroxynitrous Acid/metabolism , Protein Processing, Post-Translational , Signal Transduction , Superoxides , Tyrosine/analogs & derivatives , Tyrosine/metabolism
18.
Behav Brain Res ; 340: 63-70, 2018 03 15.
Article in English | MEDLINE | ID: mdl-27780722

ABSTRACT

Traumatic brain injury (TBI) causes sustained disability due to compromised neurorepair mechanisms. Crucial to neurorepair and functional recovery following both TBI and stroke is hypoxia-inducible factor-1 alpha (HIF-1α). Based on reports that HIF-1α could be stabilized via S-nitrosylation, we tested the hypothesis that the S-nitrosylating agent S-nitrosoglutathione (GSNO) would stabilize HIF-1α, thereby stimulating neurorepair mechanisms and aiding in functional recovery. TBI was induced by controlled cortical impact (CCI) in adult rats. GSNO (0.05mg/kg) was administered at two hours after CCI. The treatment was repeated daily until the 14th day after CCI. Functional recovery was assessed by motor and cognitive functions, and the recovery was compared with the expression of HIF-1α. The mechanisms of GSNO-mediated S-nitrosylation of HIF-1α were determined using brain endothelial cells. While non-treated TBI animals showed sustained neurobehavioral deficits, GSNO treatment of TBI improved neurobehavioral functions. GSNO also increased the expression of HIF-1α and VEGF. The beneficial effects of GSNO on neurobehavioral functions in TBI animals were blocked by treatment with the HIF-1α inhibitor 2-methoxyestradiol (2-ME). The stimulatory effect of GSNO on VEGF was reversed not only by 2-ME but also by the denitrosylating agent dithiothreitol, confirming our hypothesis that GSNO's benefits are mediated by the stabilization of HIF-1α via S-nitrosylation. GSNO's S-nitrosylation of HIF-1α was further confirmed using a biotin switch assay in endothelial cells. The data provide evidence that GSNO treatment of TBI aids functional recovery through stabilizing HIF-1α via S-nitrosylation. GSNO is a natural component of the human brain/body, and its exogenous administration has not shown adverse effects in humans. Therefore, the translational potential of GSNO therapy in TBI is high.


Subject(s)
Brain Injuries/drug therapy , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neuroprotective Agents/pharmacology , Recovery of Function/drug effects , S-Nitrosoglutathione/pharmacology , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Injuries/metabolism , Brain Injuries/pathology , Brain Injuries/psychology , Cell Line , Disease Models, Animal , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Expression/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Male , Mice , Motor Skills/drug effects , Motor Skills/physiology , Protein Stability/drug effects , Random Allocation , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Recovery of Function/physiology
19.
Neural Regen Res ; 12(5): 696-701, 2017 May.
Article in English | MEDLINE | ID: mdl-28616019

ABSTRACT

Mild traumatic brain injury (TBI), also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide (NO), the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha (HIF-1α), a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione (GSNO) and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.

20.
J Pharm Pharmacol ; 68(10): 1310-9, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27484743

ABSTRACT

OBJECTIVE: Sepsis induces an inflammatory response that results in acute renal failure (ARF). The current study is to evaluate the role of S-Nitrosoglutathione (GSNO) in renoprotection from lipopolysaccharide (LPS)-induced sepsis. METHODS: Rats were divided to three groups. First group received LPS (5 mg/kg body weight), second group was treated with LPS + GSNO (50 µg/kg body weight), and third group was administered with vehicle (saline). They were sacrificed on day 1 and 3 post-LPS injection. Serum levels of nitric oxide (NO), creatinine and blood urea nitrogen (BUN) were analysed. Tissue morphology, T lymphocyte infiltrations, and the expression of inflammatory (TNF-α, iNOS) and anti-inflammatory (IL-10) mediators as well as glutathione (GSH) levels were determined. KEY FINDING: Lipopolysaccharide significantly decreased body weight and increased cellular T lymphocyte infiltration, caspase-3 and iNOS and decreased PPAR-γ in renal tissue. NO, creatinine and BUN were significantly elevated after LPS challenge, and they significantly decreased after GSNO treatment. TNF-α level was found significantly increased in LPS-treated serum and kidney. GSNO treatment of LPS-challenged rats decreased caspase-3, iNOS, TNF-α, T lymphocyte infiltration and remarkably increased levels of IL-10, PPAR-γ and GSH. CONCLUSION: GSNO can be used as a renoprotective agent for the treatment of sepsis-induced acute kidney injury.


Subject(s)
Acute Kidney Injury/drug therapy , Kidney/drug effects , Lipopolysaccharides/pharmacology , S-Nitrosoglutathione/pharmacology , Sepsis/chemically induced , Sepsis/drug therapy , Acute Kidney Injury/blood , Acute Kidney Injury/chemically induced , Animals , Anti-Inflammatory Agents/pharmacology , Blood Urea Nitrogen , Caspase 3/metabolism , Creatinine/blood , Female , Glutathione/metabolism , Interleukin-10/metabolism , Kidney/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Rats , Rats, Sprague-Dawley , Sepsis/blood , Sepsis/metabolism , T-Lymphocytes/drug effects , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...