Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(29): 19768-19781, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38995720

ABSTRACT

Cyanine dyes are a class of organic, usually cationic molecules containing two nitrogen centers linked through conjugated polymethine chains. The synthesis and reactivity of cyanine derivatives have been extensively investigated for decades. Unlike the recently described phototruncation process, the thermal truncation (chain shortening) reaction is a phenomenon that has rarely been reported for these important fluorophores. Here, we present a systematic investigation of the truncation of heptamethine cyanines (Cy7) to pentamethine (Cy5) and trimethine (Cy3) cyanines via homogeneous, acid-base-catalyzed nucleophilic exchange reactions. We demonstrate how different substituents at the C3' and C4' positions of the chain and different heterocyclic end groups, the presence of bases, nucleophiles, and oxygen, solvent properties, and temperature affect the truncation process. The mechanism of chain shortening, studied by various analytical and spectroscopic techniques, was verified by extensive ab initio calculation, implying the necessity to model catalytic reactions by highly correlated wave function-based methods. In this study, we provide critical insight into the reactivity of cyanine polyene chains and elucidate the truncation mechanism and methods to mitigate side processes that can occur during the synthesis of cyanine derivatives. In addition, we offer alternative routes to the preparation of symmetrical and unsymmetrical meso-substituted Cy5 derivatives.

2.
Angew Chem Int Ed Engl ; 61(19): e202115690, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35146862

ABSTRACT

In the emerging field of intramolecular charge transfer induced counterion migration, we report the new insights into photophysical features of luminescent donor-acceptor phosphonium dyes (D-π-)n A+ [X- ] (π=-(C6 H4 )x -). The unique connectivity of the phosphorus atom affords multipolar molecules with a variable number of arms and the electronic properties of the acceptor group. In the ion-paired form, the transition from dipolar to quadrupolar configuration enhances the low energy migration-induced band by providing the additional pathways for anion motion. The multipolar architecture, adjustable lengths of the π-spacers and the nature of counterions allow for efficient tuning of the emission and achieving nearly pure white light with quantum yields around 30 %. The methyl substituent at the phosphorus atom reduces the rate of ion migration and suppresses the red shifted bands, simultaneously improving total emission intensity. The results unveil the harnessing of the multiple emission of phosphonium fluorophores by anion migration via structure and branching of donor-acceptor arms.

SELECTION OF CITATIONS
SEARCH DETAIL