Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(14): e34710, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39148982

ABSTRACT

The increasing pressures of urban development and agricultural expansion have significant implications for land use and land cover (LULC) dynamics, particularly in ecologically sensitive regions like the Murree and Kotli Sattian tehsils of the Rawalpindi district in Pakistan. This study's primary objective is to assess spatial variations within each LULC category over three decades (1992-2023) using cross-tabulation in ArcGIS to identify changes in LULC and investigates into forest fragmentation analysis using the Landscape Fragmentation Tool (LFTv2.0) to classify forest into several classes such as patch, edge, perforated, small core, medium core, and large core. Utilizing remote sensing data from Landsat 5 and Landsat 9 satellites, the research focuses on the temporal dynamics in various land classes including Coniferous Forest (CF), Evergreen Forest (EF), Arable Land (AR), Buildup Area (BU), Barren Land (BA), Water (WA), and Grassland (GL). The Support Vector Machine (SVM) classifier and ArcGIS software were employed for image processing and classification, ensuring accuracy in categorizing different land types. Our results indicate a notable reduction in forested areas, with Coniferous Forest (CF) decreasing from 363.9 km2, constituting 45.0 % of the area in 1992, to 291.5 km2 (36.0 %) in 2023, representing a total decrease of 72.4 km2. Similarly, Evergreen Forests have also seen a significant reduction, from 177.9 km2 (22.0 %) in 1992 to 99.8 km2 (12.3 %) in 2023, a decrease of 78.1 km2. The study investigates into forest fragmentation analysis using the Landscape Fragmentation Tool (LFTv2.0), revealing an increase in fragmentation and a decrease in large core forests from 20.3 % of the total area in 1992 to 7.2 % in 2023. Additionally, the patch forest area increased from 2.4 % in 1992 to 5.9 % in 2023, indicating significant fragmentation. Transition matrices and a Sankey diagram illustrate the transitions between different LULC classes, providing a comprehensive view of the dynamics of land-use changes and their implications for ecosystem services. These findings highlight the critical need for robust conservation strategies and effective land management practices. The study contributes to the understanding of LULC dynamics and forest fragmentation in the Himalayan region of Pakistan, offering insights essential for future land management and policymaking in the face of rapid environmental changes.

2.
Sci Rep ; 14(1): 11775, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783048

ABSTRACT

This study assesses the relationships between vegetation dynamics and climatic variations in Pakistan from 2000 to 2023. Employing high-resolution Landsat data for Normalized Difference Vegetation Index (NDVI) assessments, integrated with climate variables from CHIRPS and ERA5 datasets, our approach leverages Google Earth Engine (GEE) for efficient processing. It combines statistical methodologies, including linear regression, Mann-Kendall trend tests, Sen's slope estimator, partial correlation, and cross wavelet transform analyses. The findings highlight significant spatial and temporal variations in NDVI, with an annual increase averaging 0.00197 per year (p < 0.0001). This positive trend is coupled with an increase in precipitation by 0.4801 mm/year (p = 0.0016). In contrast, our analysis recorded a slight decrease in temperature (- 0.01011 °C/year, p < 0.05) and a reduction in solar radiation (- 0.27526 W/m2/year, p < 0.05). Notably, cross-wavelet transform analysis underscored significant coherence between NDVI and climatic factors, revealing periods of synchronized fluctuations and distinct lagged relationships. This analysis particularly highlighted precipitation as a primary driver of vegetation growth, illustrating its crucial impact across various Pakistani regions. Moreover, the analysis revealed distinct seasonal patterns, indicating that vegetation health is most responsive during the monsoon season, correlating strongly with peaks in seasonal precipitation. Our investigation has revealed Pakistan's complex association between vegetation health and climatic factors, which varies across different regions. Through cross-wavelet analysis, we have identified distinct coherence and phase relationships that highlight the critical influence of climatic drivers on vegetation patterns. These insights are crucial for developing regional climate adaptation strategies and informing sustainable agricultural and environmental management practices in the face of ongoing climatic changes.


Subject(s)
Climate , Seasons , Pakistan , Plant Development , Plants , Climate Change , Temperature , Environmental Monitoring/methods
3.
Humanit Soc Sci Commun ; 10(1): 226, 2023.
Article in English | MEDLINE | ID: mdl-37192944

ABSTRACT

The local communities living around national parks or areas like World Heritage Site (WHS) are crucial stakeholders to such settings. Their well-being needs to be unraveled so that the holistic management of the national park is in good condition to stabilize its status as WHS through the support and empowerment of the community. Numerous studies have been conducted on the biodiversity and geology of Gunung Mulu National Park (GMNP), but the community psychology aspect that is the foundation of conservation efforts has not been addressed. Therefore, this study aims to examine the community well-being dimensions in terms of environment, economics, social aspects as well as authority intervention based on the perspective of the local community and professionals with an emphasis on the current issues in GMNP. Quantitative and qualitative approaches were used in this study through a questionnaire to 99 local communities, and individual interviews that were conducted in GMNP and four nearby villages. Data were analyzed descriptively with four themes: environment; economics; social; and authority intervention. The findings showed that locals were satisfied in residing area in terms of environmental conditions. However, it does not reflect the actual situation, i.e., river water cloudiness, wildlife threat, degradation of wetlands, and solid waste issues are still happening. The constraints of the COVID-19 pandemic portrayed that they were very dissatisfied with their monthly income, which is very low compared to before. In terms of social, the services and facilities, especially treated water and electricity need improvement. It also noted that authority intervention especially related to road proposal, financial and skills assistance, and community conflicts could influence locals' support for the planning and policies implemented in the national parks or WHS areas. This study suggests that relevant stakeholders should emphasize bottom-up approaches by considering aspects of community well-being that stem from multiple dimensions in order to achieve holistic national park management.

4.
Plants (Basel) ; 11(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36365368

ABSTRACT

Mangrove productivity depends on the storage of nutrients and elements. Elemental concentrations were examined in leaves, roots, and sediments for three age stands (15, 25 years, and VJR) of Rhizophora apiculata in the Matang Mangrove Forest Reserve (MMFR). Six compartments with two compartments each for each age group were used to analyze sixteen elements. Four types of elemental patterns were examined with decreasing order during analysis: (1) Cd < Cu < Pb < Zn < Mg < Mn < Fe < K < Na < Ca and P% < S% < N% < C% in leaves, (2) Cd < Pb < Cu < Zn < Mg < Mn < Fe < K < Na < Ca and P% < S% < N% < C% in roots, (3) Cd < Pb < Cu < Zn < Mg < Mn < K < Fe < Na < Ca and P% < N% < S% < C% in sediment samples and (4) Cd(S) < Pb(S) < Cu(S) < Zn(S) < Mg(S) < Mn(L) < K(L) < Fe(S) < Na(R) < Ca(R) and P%(S) < S%(S) < N%(L) < C%(R) collectively for all samples. Evidence that elements do not store primarily in above-ground biomass can be found in the observation that elements are stored more in sediment and roots. The outcome of the present study shows that the rate of increase of elements in trees (leaves and roots) was less as compared to sediments, where the elemental concentration increased considerably with time. Elemental concentration comparison within three age classes showed that C, N, and S were significantly different in all three types of samples. The δ15N ratios showed positive values in all six compartments which supported the concept that the δ15N ratio could not be observed in N concentration in this study. The δ13C values showed more negative values in all six compartments which represented less salinity and a freshwater intake. The S, P, and heavy metals concentrations were high. The concentrations of Cd, P, N, C, and S in the sediment influenced variations in four compartments in accordance with the three mangrove age groups. The results of this study can be utilized to create management plans for MMFR and conduct risk assessments of the elements' concentration in sediment.

5.
Molecules ; 27(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35744986

ABSTRACT

Cancer is the second-ranked disease and a cause of death for millions of people around the world despite many kinds of available treatments. Phytochemicals are considered a vital source of cancer-inhibiting drugs and utilize specific mechanisms including carcinogen inactivation, the induction of cell cycle arrest, anti-oxidant stress, apoptosis, and regulation of the immune system. Family Fabaceae is the second most diverse family in the plant kingdom, and species of the family are widely distributed across the world. The species of the Fabaceae family are rich in phytochemicals (flavonoids, lectins, saponins, alkaloids, carotenoids, and phenolic acids), which exhibit a variety of health benefits, especially anti-cancer properties; therefore, exploration of the phytochemicals present in various members of this family is crucial. These phytochemicals of the Fabaceae family have not been explored in a better way yet; therefore, this review is an effort to summarize all the possible information related to the phytochemical status of the Fabaceae family and their anti-cancer properties. Moreover, various research gaps have been identified with directions for future research.


Subject(s)
Fabaceae , Neoplasms , Antioxidants/pharmacology , Antioxidants/therapeutic use , Fabaceae/chemistry , Humans , Neoplasms/drug therapy , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
6.
Plants (Basel) ; 10(10)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34685784

ABSTRACT

Lack of proper infrastructure and the poor economic conditions of rural communities make them dependent on herbal medicines. Thus, there is a need to obtain and conserve the historic and traditional knowledge about the medicinal importance of different plants found in different areas of the world. In this regard, a field study was conducted to document the medicinal importance of local plants commonly used by the inhabitants of very old historic villages in Southern Punjab, Pakistan. In total, 58 plant species were explored, which belonged to 28 taxonomic families, as informed by 200 experienced respondents in the study area. The vernacular name, voucher number, plant parts used, and medicinal values were also documented for each species. Among the documented species, Poaceae remained the most predominant family, followed by Solanaceae and Asteraceae. The local communities were dependent on medicinal plants for daily curing of several ailments, including asthma, common cold, sore throat, fever, cardiovascular diseases, and digestive disorders. Among the reported species, leaves and the whole plant remained the most commonly utilized plant parts, while extracts (38.8%) and pastes (23.9%) were the most popular modes of utilization. Based on the ICF value, the highest value was accounted for wound healing (0.87), followed by skincare, nails, hair, and teeth disorders (0.85). The highest RFC value was represented by Acacia nilotica and Triticum aestivum (0.95 each), followed by Azadirachta indica (0.91). The highest UV was represented by Conyza canadensis and Cuscuta reflexa (0.58 each), followed by Xanthium strumarium (0.37). As far as FL was concerned, the highest value was recorded in the case of Azadirachta indica (93.4%) for blood purification and Acacia nilotica (91.1%) for sexual disorders. In conclusion, the local inhabitants primarily focus on medicinal plants for the treatment of different diseases in the very old historic villages of Southern Punjab, Pakistan. Moreover, there were various plants in the study area that have great ethnobotanical potential to treat various diseases, as revealed through different indices.

7.
Plants (Basel) ; 10(8)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34451659

ABSTRACT

Mitigating climate change requires the identification of tree species that can tolerate water stress with fewer negative impacts on plant productivity. Therefore, the study aimed to evaluate the water stress tolerance of young saplings of C. erectus and M. alba under three soil water deficit treatments (control, CK, 90% field capacity, FC, medium stress MS, 60% FC and high stress, HS, 30% FC) under controlled conditions. Results showed that leaf and stem dry weight decreased significantly in both species under MS and HS. However, root dry weight and root/shoot ratio increased, and total dry weight remained similar to CK under MS in C. erectus saplings. Stomatal conductance, CO2 assimilation rate decreased, and intrinsic water use efficiency increased significantly in both species under MS and HS treatments. The concentration of hydrogen peroxide, superoxide radical, malondialdehyde and electrolyte leakage increased in both the species under soil water deficit but was highest in M. alba. The concentration of antioxidative enzymes like superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase also increased in both species under MS and HS but was highest in C. erectus. Therefore, results suggest that C. erectus saplings depicted a better tolerance to MS due to an effective antioxidative enzyme system.

8.
Int J Phytoremediation ; 22(3): 287-294, 2020.
Article in English | MEDLINE | ID: mdl-31468990

ABSTRACT

Conocarpus lancifolius is a fast-growing and drought tolerant tree species with phytoremediation potential in arid environments. The present study was conducted to evaluate the phytoaccumulation potential under wastewater treatment. The experiment was performed in a greenhouse where 3-month-old seedlings were irrigated with industrial wastewater and growth, biomass and physiological parameters were measured. Concentrations of zinc (Zn), lead (Pb), and cadmium (Cd) in leaves, shoots, and roots along with translocation and tolerance index were also determined. The results showed that under wastewater treatment total biomass increased from 24.2 to 31.5 g, net CO2 assimilation rate increased from 9.93 to 13.3 µmol m-2 s-1, and water use efficiency increased from 1.7 to 2.42. Similarly, heavy metals (Zn, Pb, and Cd) accumulation in stem, leaves, and roots increased significantly under wastewater treatment where the highest concentration of Zn, Pb and Cd was found in roots followed by leaves and stem, respectively. Tolerance index was found >1, and translocation factor of all heavy metals was found >1. The study revealed that phytoaccumulation potential of C. lancifolius was mainly driven by improved net CO2 assimilation rate and water use efficiency.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Cadmium , Lead , Wastewater , Zinc
9.
Environ Sci Pollut Res Int ; 24(3): 2827-2839, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27838904

ABSTRACT

This study emphasizes on near surface observation of chemically active trace gases such as nitrogen dioxide (NO2) over Islamabad on a regular basis. Absorption spectroscopy using backscattered extraterrestrial light source technique was used to retrieve NO2 differential slant column densities (dSCDs). Mini multi-axis-differential optical absorption spectroscopy (MAX-DOAS) instrument was used to perform ground-based measurements at Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST) Islamabad, Pakistan. Tropospheric vertical column densities (VCDs) of NO2 were derived from measured dSCDs by using geometric air mass factor approach. A case study was conducted to identify the impact of different materials (glass, tinted glass, and acrylic sheet of various thicknesses used to cover the instrument) on the retrieval of dSCDs. Acrylic sheet of thickness 5 mm was found most viable option for casing material as it exhibited negligible impact in the visible wavelength range. Tropospheric NO2 VCD derived from ground-based mini MAX-DOAS measurements exceeded two times the Pak-NEQS levels and showed a reasonable comparison (r 2 = 0.65, r = 0.81) with satellite observations (root mean square bias of 39 %) over Islamabad, Pakistan.


Subject(s)
Air Pollutants/analysis , Nitrogen Dioxide/analysis , Environmental Monitoring/methods , Ozone/analysis , Pakistan , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL