Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(6): e28157, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38524624

ABSTRACT

Automobile exhaust releases different types of pollutants that are at great risk to the air quality of the environment and incidental distress to the nature of roadside plants. Mimusops elengi L. is an evergreen medicinal tree cultivated along the roadside of Lahore City. This research aimed to investigate physiological, morphological and genomorphic characteristics of M. elengi under the influence of air pollution from vehicles. Healthy and mature leaves were collected from trees on Canal Bank and Mall roads of Lahore as the experimental sites and control sites were 20 km away from the experimental site. Different physiochemical, morphological, air pollution tolerance index (APTI) and molecular analysis for the detection of DNA damage were performed through comet assay. The results demonstrated the mean accumulated Cd, Pb, Cu and Ni heavy metal contents on the leaves were higher than the control plants (1.27, 3.22, 1.32 and 1.46 µg mg-1). APTI of trees was 9.04. Trees in these roads significantly (p < 0.01) had a lower leaf area, petiole length and leaf dry matter content in comparison to control site. Increased comet tail showed that DNA damage was higher for roadside trees than trees in the control area. For tolerance of air pollution, it necessary to check the APTI value for the M. elengi at the polluted road side of Lahore city. For long-term screening, the source and type of pollutants and consistent monitoring of various responses given by the trees should be known.

2.
Biol Trace Elem Res ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38112988

ABSTRACT

One of the most pressing environmental issues is how to properly dispose of municipal solid waste (MSW), which represents both a substantial source of concern and a challenge. The current study evaluated cobalt (Co) accumulation in MSW, their uptake by different vegetables grown for two years, and related human health risks. Vegetables were grown in four different groups, such as one control (ground soil), and the remaining treatment groups (T1, T2, and T3) received varying concentrations of MSW. The analysis of Co was done through an atomic absorption spectrophotometer (AAS). Results revealed that the concentration of Co was higher in all the vegetables (n = 15) grown in soil supplemented with 75% MSW during 2nd growing year. Among all vegetables, the highest concentration of Co was observed in Solanum tuberosum at T3 during 2nd growing year. The pollution load index (PLI) value for vegetables during both growing years was more than 1 except in control soil. The findings indicated that the highest enrichment factor (EF) and hazard resilience index (HRI) value of 0.09 was present in S. tuberosum. Health index values for cobalt in the study were below 1. The HRI < 1 indicated that consumers do not face any immediate health risks. The investigation of Co concentrations in blood samples obtained from individuals residing in different areas contributes a human health perspective to the research. The findings indicate that the concentration of Co rises with an increasing proportion of MSW. While the metal levels in MSW-treated soil were not high enough to classify the soil as polluted, the results recommend that recycling MSW can substitute mineral fertilizers. Nevertheless, the presence of cobalt in MSW may directly affect soil fertility and could impact crop production and human health.

4.
Plants (Basel) ; 12(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37896115

ABSTRACT

The primary objective of this study was to determine the heavy metal contents in the water-soil-coriander samples in an industrial wastewater irrigated area and to assess the health risks of these metals to consumers. Sampling was done from areas adjoining the Chistian sugar mill district Sargodha and two separate sites irrigated with groundwater (Site 1), and sugar mill effluents (Site 2) were checked for possible metal contamination. The water-soil-coriander continuum was tested for the presence of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Ni), lead (Pb), and zinc (Zn). The mean concentrations of all metals were higher than the permissible limits for all studied metals except for Mn in the sugar mill wastewater, with Fe (8.861 mg/L) and Zn (9.761 mg/L) exhibiting the highest values. The mean levels of Fe (4.023 mg/kg), Cd (2.101 mg/kg), Cr (2.135 mg/kg), Cu (2.180 mg/kg), and Ni (1.523 mg/kg) were high in the soil at Site 2 in comparison to the groundwater irrigated site where Fe (3.232 mg/kg) and Cd (1.845 mg/kg) manifested high elemental levels. For coriander specimens, only Cd had a higher mean level in both the groundwater (1.245 mg/kg) and the sugar mill wastewater (1.245 mg/kg) irrigated sites. An estimation of the pollution indices yielded a high risk from Cd (health risk index (HRI): 173.2), Zn (HRI: 7.012), Mn (HRI: 6.276), Fe (HRI: 1.709), Cu (HRI: 1.282), and Ni (HRI: 1.009), as all values are above 1.0 indicating a hazard to human health from consuming coriander irrigated with wastewater. Regular monitoring of vegetables irrigated with wastewater is strongly advised to reduce health hazards to people.

5.
Bull Environ Contam Toxicol ; 111(5): 64, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37904063

ABSTRACT

The present study aimed to determine the accumulation levels of arsenic in pasture soil, forage and animals. An atomic absorption spectrophotometer was used to determine the concentration of metals in the samples of soil, forage and blood plasma of horses. The level of arsenic ranged between 4.26 mg/kg (summer) and 4.66 mg/kg (winter) in soil samples and 2.67 mg/kg (summer) and 2.94 mg/kg (winter) in forage samples. In blood plasma samples, the mean arsenic (As) values varied between 1.38 and 1.52 mg/L. In the blood plasma samples, the mean As values varied between 1.38 and 1.52 mg/L. No statistically significant changes were observed for arsenic concentrations in plasma samples of horses for sampling seasons (p > 0.05). A positive correlation was observed for forage and blood plasma to a certain degree for arsenic but for other media, arsenic correlations were negative and insignificant. It is therefore suggested that regular monitoring of heavy metals in soils/plants/animals is essential to prevent excessive build-up of arsenic.


Subject(s)
Arsenic , Metals, Heavy , Soil Pollutants , Horses , Animals , Seasons , Soil , Pakistan , Metals, Heavy/analysis , Soil Pollutants/analysis , Environmental Monitoring
6.
PeerJ ; 11: e15565, 2023.
Article in English | MEDLINE | ID: mdl-37397008

ABSTRACT

Faisalabad is a major industrial area in Pakistan's Punjab province that discharges wastewater into the Chenab River. Industrial effluents in Faisalabad are predicted to pose a significant threat to the riparian vegetation of the Chenab River and nearby vegetation. Heavy metal pollution of plants, water, and soils is one of the biggest problems worldwide that needs to be addressed because heavy metals above normal levels are extremely dangerous to both riparian vegetation and wildlife. The results indicated high levels of pollution in the industrial effluents as well as in the river in terms of salinity, metal toxicity, TSS, TDS, SAR, the acidic and alkaline nature of the industrial effluents, and the spread of industrial effluents up to 15 square kilometres in the Chenab River. Despite the higher pollution, four plants were found at all sites: Calotropis procera, Phyla nodiflora, Eclipta alba and Ranunculus sceleratus. It was found that most of the selected plants were phytoaccumulators, making them best suited to survive in harsh environments such as those with industrial pollution. The Fe concentration in the plant constituents was the highest, along with Zn, Pb, Cd, and Cu, all of which were above the permissible limits of the WHO. The metal transfer factor (MTF) was higher in most of the plants studied, and even exceeded 10 at some severely affected sites. Calotropis procera proved to be the most suitable plant for growth on drainage systems and also at river sites, as it had the highest importance value across all sites and seasons.


Subject(s)
Environmental Monitoring , Metals, Heavy , Pakistan , Metals, Heavy/analysis , Environmental Pollution , Wastewater
7.
Sensors (Basel) ; 23(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36679463

ABSTRACT

With the emergence of delay- and energy-critical vehicular applications, forwarding sense-actuate data from vehicles to the cloud became practically infeasible. Therefore, a new computational model called Vehicular Fog Computing (VFC) was proposed. It offloads the computation workload from passenger devices (PDs) to transportation infrastructures such as roadside units (RSUs) and base stations (BSs), called static fog nodes. It can also exploit the underutilized computation resources of nearby vehicles that can act as vehicular fog nodes (VFNs) and provide delay- and energy-aware computing services. However, the capacity planning and dimensioning of VFC, which come under a class of facility location problems (FLPs), is a challenging issue. The complexity arises from the spatio-temporal dynamics of vehicular traffic, varying resource demand from PD applications, and the mobility of VFNs. This paper proposes a multi-objective optimization model to investigate the facility location in VFC networks. The solutions to this model generate optimal VFC topologies pertaining to an optimized trade-off (Pareto front) between the service delay and energy consumption. Thus, to solve this model, we propose a hybrid Evolutionary Multi-Objective (EMO) algorithm called Swarm Optimized Non-dominated sorting Genetic algorithm (SONG). It combines the convergence and search efficiency of two popular EMO algorithms: the Non-dominated Sorting Genetic Algorithm (NSGA-II) and Speed-constrained Particle Swarm Optimization (SMPSO). First, we solve an example problem using the SONG algorithm to illustrate the delay-energy solution frontiers and plotted the corresponding layout topology. Subsequently, we evaluate the evolutionary performance of the SONG algorithm on real-world vehicular traces against three quality indicators: Hyper-Volume (HV), Inverted Generational Distance (IGD) and CPU delay gap. The empirical results show that SONG exhibits improved solution quality over the NSGA-II and SMPSO algorithms and hence can be utilized as a potential tool by the service providers for the planning and design of VFC networks.


Subject(s)
Algorithms , Transportation , Physical Phenomena , Biological Evolution
8.
Biol Trace Elem Res ; 201(2): 706-719, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35334063

ABSTRACT

Cobalt (Co) bioaccumulation, contamination, and toxicity in the soil environment, plant growth, and cattles' health are becoming a severe matter that can cause unembellished consequences in environmental safety and human health. The present research was conducted for the assurance of cobalt (Co) amassing in three forage plant species (Zea mays, Sorghum bicolor, Trifolium alaxandrium), from four ecological sites, and sewage water and in buffaloes blood was investigated. The analysis of variance showed significant differences for Co concentration in the soil and sewage water collected from all ecological sites. Meanwhile, summer and winter seasons and forage ecotypes significantly influenced the quantity of Co. The forage pastures also vary significantly in the concentration of Co in the above-ground parts. The highest Co level was present in Trifolium alaxandrium at ecological site-5. Cobalt taken from wastewater had a higher concentration in Trifolium alaxandrium during the winter. The samples which are collected from site-V and site-IV have the maximum concentration of Co because these areas receive highly contaminated water for irrigation. Cobalt tends to be bioaccumulated in the food chain and can cause serious problems in humans and animals. Bioaccumulation of cobalt in collected samples could be accredited to anthropogenic activities. Pollution load index values for all samples fell in the range below 1. The health risk index indicated the probability of health damage caused by the ingestion of contaminated fodder. An increase of Co concentration in soil, fodder, and blood owing to wastewater irrigation to crops was indicated as an outcome of this investigation. The results indicate that the Co toxicity in forage crops is attributed to Co bioaccumulation, transfer, and pollution load in the soil-water-cattle triangle. Efforts should be extended to avoid contamination of the food chain via Co-rich sewage water. Other nonconventional water resources should be used for forage irrigation.


Subject(s)
Metals, Heavy , Soil Pollutants , Animals , Cattle , Humans , Cobalt/toxicity , Cobalt/analysis , Soil , Buffaloes , Wastewater , Livestock , Sewage , Bioaccumulation , Ecosystem , Water , Crops, Agricultural , Soil Pollutants/analysis , Metals, Heavy/analysis , Environmental Monitoring , Risk Assessment
9.
PLoS One ; 17(11): e0275497, 2022.
Article in English | MEDLINE | ID: mdl-36346788

ABSTRACT

Irrigation using sewage water can be beneficial, as it can increase the productivity of crops but has negative consequences on crops, soil contamination, and human health. It contains a variety of toxins, such as chemicals and heavy metals, which damage the soil and crops. In this regard, the aim of the research was to assess the potential health hazards of iron (Fe) metal in food crops (leafy and root crops) treated with wastewater (T_1), canal water (T_2), and tube well water (T_3). Water, soil, and edible components of food crops were collected at random from three distinct locations. Fe concentration in samples was estimated using atomic absorption spectrophotometer, following wet digestion method. The Fe concentrations, ranged from 0.408 to 1.03 mg/l in water, 31.55 to 187.47 mgkg-1 in soil and 4.09 to 32.583 mgkg-1 in crop samples; which were within permissible limits of the World Health Organization (WHO). There was a positive correlation between soils and crops. The bioconcentration factor, enrichment factor (EF), daily intake of metals (DIM), health risk index (HRI), and target hazard quotient (THQ) all values were <1, except for a pollution load index >1, which indicated soil contamination, but there was no Fe toxicity in crops, no health risk, and no-carcinogenic risk for these food crops in humans. To prevent the excessive accumulation of Fe metal in the food chain, regular monitoring is needed.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Soil , Wastewater , Soil Pollutants/toxicity , Soil Pollutants/analysis , Iron , Environmental Monitoring , Risk Assessment , Metals, Heavy/analysis , Crops, Agricultural , Water
10.
Biology (Basel) ; 11(6)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35741371

ABSTRACT

In South Asia, the high costs of synthetic fertilizers have imposed research on alternative nutrient inputs. We aimed to identify potential trace elements (PTE) present in some organic manure that might be a source of environmental pollutions and risk to public health following consumption. The study aims to evaluate how different organic waste (poultry waste, PW; press mud, PM; and farmyard manure, FYM) influences the heavy metal migration in soil, the accumulation in garlic, and their potential health risks. Organic waste caused a higher accumulation of certain metals (Zn, Cu, Fe, and Co), whereas Mn, Cd, Cr, and Pb were in lower concentrations in soil. Amendments of soil with PM revealed a higher accumulation of Cd, Cr, Fe, and Pb, whereas PW resulted in Cu and Zn accumulation in garlic. Treatment of soil with FYM exhibited higher metal concentration of Co and Mn. An environmental hazard indices study revealed that pollution load index (PLI) was highest for Cu following treatment with PM. The health risk index (HRI) was greater for Cd following amendment with PM. Maximum daily intake of metals (DIM) was observed for Zn after treatment with PW. The Pb exhibited maximum bioconcentration factor (BCF) in PM-amended plants. Based on these findings, we concluded that garlic grown on contaminated soil with organic waste may pose serious health hazards following consumption.

11.
Environ Monit Assess ; 194(7): 468, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35648302

ABSTRACT

Pollution caused by municipal solid waste (MSW) is becoming a serious threat to the environment. Composting may be an effective way to speed up the decomposition of biodegradable components in MSW, resulting in compost that can be utilized as an organic fertilizer. The pot experiments were carried out with different soil-MSW mixtures (100:0, 75:25, 50:50, and 25:75; w/w) to determine the impact of MSW on the bioconcentration of Cd in commonly consumed plants of Sargodha. The possible health risks were evaluated by applying pollution indices, such as the pollution load index, bioconcentration factor, enrichment factor, and health risk index. The pollution load index was higher than 1 in 75% MSW-amended soil. However, the concentration of Cd was found to be below the permissible limits in all studied vegetables, with a range of 0.019-0.106 mg/kg. In the study, serum samples from different volunteers living in four sites in Sargodha were also collected and analyzed. For vegetable crops, the health risk index (HRI) was less than one. It is concluded that the concentration of Cd was increased by increasing the fraction of MSW. Although the metal contents in the soil treated with MSW were not high enough to categorize the soil as polluted, these findings show that the reuse of MSW can serve as an alternative to mineral fertilizers. However, the presence of Cd in MSW can have a direct impact on soil fertility and, if biomagnified, on crop production and human health.


Subject(s)
Soil Pollutants , Soil , Cadmium/analysis , Environmental Monitoring , Fertilizers/analysis , Humans , Soil Pollutants/analysis , Solid Waste , Vegetables
12.
Plants (Basel) ; 11(11)2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35684289

ABSTRACT

Salinity is a major threat to agricultural productivity worldwide. The selection and evaluation of crop varieties that can tolerate salt stress are the main components for the rehabilitation of salt-degraded marginal soils. A field experiment was conducted to evaluate salinity tolerance potential, growth performance, carbon (δ13C) and nitrogen isotope composition (δ15N), intrinsic water use efficiency (iWUE), harvest index, and yield stability attributes in six barley genotypes (113/1B, 59/3A, N1-10, N1-29, Barjouj, Alanda01) at three salinity levels (0, 7, and 14 dS m-1). The number of spikes m-2 was highest in Alanda01 (620.8) while the lowest (556.2) was exhibited by Barjouj. Alanda01 produced the highest grain yield (3.96 t ha-1), while the lowest yield was obtained in 59/3A (2.31 t ha-1). Genotypes 113/1B, Barjouj, and Alanda01 demonstrate the highest negative δ13C values (-27.10‱, -26.49‱, -26.45‱), while the lowest values were obtained in N1-29 (-21.63‱) under salt stress. The δ15N was increased (4.93‱ and 4.59‱) after 7 and 14 dS m-1 as compared to control (3.12‱). The iWUE was higher in N1-29 (144.5) and N1-10 (131.8), while lowest in Barjouj (81.4). Grain protein contents were higher in 113/1B and Barjouj than other genotypes. We concluded that salt tolerant barley genotypes can be cultivated in saline marginal soils for food and nutrition security and can help in the rehabilitation of marginal lands.

13.
Environ Sci Pollut Res Int ; 29(23): 34685-34700, 2022 May.
Article in English | MEDLINE | ID: mdl-35040053

ABSTRACT

Zinc (Zn) is a vital nutrient element required for plants normal growth and development. It performs imperative functions in numerous metabolic pathways in the plants. However, potentially noxious levels of Zn in terrestrial environment can lead to inhibited photosynthesis, growth, respiratory rate and imbalanced mineral nutrition. In micronutrient malnutrition, Zn deficiency is a global human health problem owing to the human dependence on cereals grains especially wheat-based diet. Therefore, this study investigated the Zn uptake efficacy in Triticum aestivum that is grown under two different doses (100 g/kg or 200 g/kg) of various soil amendments in both pot and field experimentation. Results of this study revealed that mean Zn concentration in different wheat varieties and treatments were varied from 1.53 to 6.03 mg/kg, 11.27 to 40.65 mg/kg, 11.28 to 39.93 mg/kg, and 11.32 to 37.70 mg/kg in amended soil, root, shoot, and grains, respectively. All observed Zn values in soil and wheat parts were lower than the FAO/WHO standards. Zinc values observed for pollution load index (0.034-0.134 mg/kg), daily intake (0.00492-0.01533 mg/kg), and health risk (0.0164-0.0570 mg/kg) index were lower than 1 except bio-concentration factor. Bio-concentration factor (5.076-10.165 mg/kg) revealed that DHARABI-11 variety showed maximum Zn uptake efficacy in farmyard manure treatment. The daily intake and health risk index values also showed that Zn level in grains is safe for inhabitants consumption. Overall, study recommended that these organic amendments are a good source of fertilizers, essentially required for the sustainable management of soil and increases the Zn accumulation in wheat grains which can ultimately reduce the Zn malnutrition in human food chain.


Subject(s)
Malnutrition , Soil Pollutants , Humans , Minerals/metabolism , Soil , Soil Pollutants/analysis , Triticum , Zinc/analysis
14.
Environ Sci Pollut Res Int ; 29(18): 27140-27149, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34978030

ABSTRACT

In District Jhang, farmers use municipal wastewater to irrigate fodder crops as an alternative source to the deficient availability of fresh water. Therefore, the present study selected the three irrigation sources in District Jhang (canal water, ground water and municipal wastewater) to study the iron (Fe) concentration in the soil, fodder crops and ultimately their transfer into the animal body. Analysed Fe concentration varied as 16.40-27.53 mg/kg in soil samples, 19.72-30.34 mg/kg in fodder crops and 2.49-5.11 mg/kg in animals. Analysed Fe concentration in soil was higher on the wastewater irrigation site while canal water-irrigated fodder crop Zea mays exhibit the higher Fe concentration. In animal samples, higher Fe concentration was observed in the cow blood (4.09 mg/l), cow hairs (3.39 mg/kg) and cow faeces (5.11 mg/kg). Results of pollution load index (0.288-0.484 mg/kg) and enrichment factor (0.112-0.197 mg/kg) indicated that Fe concentration was minimally dispersed and enriched in these sites. Health risk and daily intake values were observed between the 0.029-0.059 and 0.042-0.084 mg/kg/day. Bio-concentration factor (0.834-1.47 mg/kg) for Fe which was greater than 1 explains that Fe contamination was transferred from the soil to fodder tissues and may raise health issues in the grazing animals if they are continuously exposed to these contaminated forages. Wastewater irrigation in study area has increased the Fe content in soil-plant environment that is a risking factor for animal and human health. Hence, this study recommended that wastewater should be treated prior to their irrigation on agricultural lands.


Subject(s)
Metals, Heavy , Soil Pollutants , Agricultural Irrigation/methods , Animal Feed/analysis , Animals , Cattle , Crops, Agricultural , Environmental Monitoring , Female , Food Chain , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis , Wastewater/analysis , Water/analysis
15.
Environ Sci Pollut Res Int ; 29(23): 34558-34574, 2022 May.
Article in English | MEDLINE | ID: mdl-35041165

ABSTRACT

Present study was conducted to check the heavy metal content in wheat treated with municipal solid waste, Although municipal solid waste was enriched with organic nutrient, micronutrients, and macro-nutrients, considerable amount of cobalt was also witnessed in municipal solid waste that s why pot experiment was executed. The concentration of cobalt in different parts of wheat (root, shoot, and grain) was analyzed by atomic absorption spectrophotometer (AA-6300 Shimadzu Japan). Highest concentration of cobalt in root, shoot, and grain of wheat was observed in the range of 0.91-1.02 mg/kg, 0.92-1.04 mg/kg, and 0.93-1.00 mg/kg, respectively, under the influence of different fertilizer's used, while in field experiment, level of Co was greater in roots followed by shoots and grain. The metal concentration in wheat grown in field was ranged from 0.67 to 0.72 mg/kg for roots, 0.64 to 0.71 mg/kg for shoots, and 0.66 to 1.71 mg/kg for grains. Concentrations of cobalt were found below the permissible limits suggested by FAO/WHO. Various indices (PLI, BCF, DIM, HRI) were calculated and results showed that PLI was above 1 indicating that metal was causing pollution in treatments while value of BCF, DIM, and HRI was within the permissible range. Higher Co content in wheat may cause damage to the pancreatic cells of animals, cause respiratory problems, and effects their kidney, liver, and lungs, if exposure is for long period through feed.


Subject(s)
Metals, Heavy , Soil Pollutants , Animals , Cobalt , Edible Grain/chemistry , Fertilizers/analysis , Metals, Heavy/analysis , Public Health , Soil , Soil Pollutants/analysis , Solid Waste , Triticum
16.
Environ Sci Pollut Res Int ; 29(10): 14584-14594, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34617216

ABSTRACT

This study's aim was to investigate iron (Fe) and zinc (Zn) concentration in the soil, forage crops, and sheep blood with respect to the seasonal availability of these metals. Soil, forage, and sheep blood samples were sampled from five different locations in Chakwal (Pidh, Tobar, Ratoccha, Choa Saiden Shah-Kalar Kahar road, and Choa Saiden Shan-Chakwal Road) during two seasons, i.e., winter and summer. All the samples were processed through wet acid digestion for evaluation of metal contents. Because of proximity of site-1 and site-2 to coal mines, higher Fe concentration was observed than Zn. Overall, varied Fe concentrations obtained in soil were 12.95-24.31 mg/kg, 1.29-9.61 mg/kg in forage and 1.17-24 mg/l in blood, whereas Zn values were 1.04-31.9 mg/kg, 1.96-7.02 mg/kg, and 0.16-6.52 mg/l for soil, forages, and blood respectively. The pollution load index value for both Fe (0.01-0.14 mg/kg) and Zn (0.02-0.72 mg/kg) was lesser than 1. Bio-concentration (0.09-2.64mg/kg) and enrichment factor (0.08-7.51 mg/kg) were showing efficient transfer of metals through the food chain. Daily intake and health risk index values of iron were ranged from 0.01 to 1.1 mg/kg/day and 0.02 to 1.05 mg/kg/day. There was a probable chance of upsurge in metal values in coming years due to continued mining activities. Anthropogenic input, mainly mining activities in the study area, have increased the Fe and Zn content in the environment which can ultimately find their way up the food chain, thereby risking the health of grazing livestock.


Subject(s)
Metals, Heavy , Soil Pollutants , Animals , China , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment , Ruminants , Sheep , Soil , Soil Pollutants/analysis
17.
Environ Sci Pollut Res Int ; 29(3): 4170-4179, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34405324

ABSTRACT

Grazing animals act as a bioindicator to study the heavy metal status in the pasture lands because excessive amount of toxic metals in the animal diet either disturb their normal activity or deposit the contaminants into their tissues. The aim of this study was to appraise the chromium status in soil and pasture crops with respect to the nutritional requirement of grazing animals. Three different sites were selected to collect soil, forages, and animal samples from District Jhang. All the samples were processed through atomic absorption spectrophotometer to analyze the chromium concentration in them. Chromium concentration was varied as 0.703-4.20 mg/kg in soil, 0.45-2.85 mg/kg in forages, and 0.588-2.37 mg/kg in all collected animal samples. Both the soil and forage samples displayed the maximum chromium concentration in the Capparis decidua, whereas animal samples revealed maximum concentration in animal blood. Results of pollution load index (0.078 to 0.463 mg/kg) exhibited that all the sample values are less than unity while enrichment factor (1.57-8.25mg/kg) showed that significant level of chromium is enriched in these sites. The maximum value of daily intake (0.0007-0.0055mg/kg/day) and health risk index (0.0004-0.00370055mg/kg/day) was observed in the buffalo that feed on the Capparis decidua. Bio-concentration factor (0.398-2.09mg/kg) value was the maximum in the Medicago sativa. It is concluded that all the animal samples showed chromium concentration beyond their standards. Thus, proper measures should be taken to reduce the metal contamination in these areas that ultimately lessen the availability of toxic metals to grazing animals.


Subject(s)
Metals, Heavy , Soil Pollutants , Animals , Chromium , Environmental Monitoring , Female , Metals, Heavy/analysis , Pakistan , Risk Assessment , Ruminants , Soil , Soil Pollutants/analysis
18.
Environ Sci Pollut Res Int ; 29(3): 3386-3393, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34387818

ABSTRACT

Present work evaluated the zinc (Zn) concentration in soil, forage, blood plasma, hair, and feces samples of cows, buffaloes, and sheep taken from Mianwali, Punjab, Pakistan. The concentration of Zn was found in the ranged of 21.82-35.09mg/kg, 32.59-42.17mg/kg, 0.927-2.48mg/l, 1.03-2.84mg/kg, and 0.923-1.98mg/kg in soil, forage, blood plasma, hair, and feces samples, respectively. The Zn concentration in soil, forage, blood, hair, and feces was safer compared to standard limits. Statistical analysis described that values for BCF, PLI, EF, DIM, and HRI ranged 1.03-1.57mg/kg, 0.486-0.782mg/kg, 0.457-0.696mg/kg, 0.048-0.08mg/kg, and 0.160-0.272mg/kg, respectively. It can be concluded from the present work that Zn concentration was safe in soil, forages, and animal samples. BCF was noticed as greater than 1 while PLI, EF, DIM, and HRI were found less than 1, so regular heavy metal analysis was required to appraise the contamination level in environment.


Subject(s)
Metals, Heavy , Soil Pollutants , Animals , Cattle , Environmental Monitoring , Female , Metals, Heavy/analysis , Public Health , Risk Assessment , Ruminants , Sheep , Soil , Soil Pollutants/analysis , Zinc
19.
Environ Sci Pollut Res Int ; 29(2): 2718-2727, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34378137

ABSTRACT

Heavy metals pollution has thorough worldwide apprehensions due to the instantaneous growth of industries. Farming regions are irrigated mainly with wastewater which contains both municipal and industrial emancipations. Keeping in view the above scenario, a study was designed in which three sites irrigated with ground, canal, and municipal wastewater in the District Jhang were selected to determine the zinc accumulation and its transfer in the soil, plant, and animal food chain. Zinc concentration was ranged as 18.85-35.59mg/kg in the soil, 26.42-42.67 mg/kg in the forage, and 0.982-2.85mg/kg in the animal samples. Investigated zinc concentration in soil and forages was found to be within the recommended WHO/FAO limits, but blood samples exceed the standards of NRC (2007). The maximum level of pollution load index (0.427-0.805mg/kg) and enrichment factor (0.373-0.894 mg/kg) for zinc was noticed upon wastewater irrigation. Daily intake (0.039 to 0.082 mg/kg/day) and health risk index (0.130 to 0.275 mg/kg/day) of zinc metal was higher in the buffaloes that feed on wastewater-irrigated forages. Bio-concentration factor (0.840 to 2.01mg/kg) for soil-forage was >1 which represents that these plants accumulated the zinc concentration into their tissues and raised health issues in grazing animals on consumption of wastewater-contaminated forages. As animal-derived products are part of human food, then zinc toxicity prevailed in livestock tissues ultimately affects the human food chain. Overall, findings of this study concluded that animal herds should be monitored periodically to devise preventive measures regarding the toxic level of heavy metals availability to livestock.


Subject(s)
Metals, Heavy , Soil Pollutants , Animals , Bioaccumulation , Environmental Monitoring , Humans , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis , Wastewater/analysis , Zinc
20.
Environ Sci Pollut Res Int ; 29(15): 21634-21641, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34767165

ABSTRACT

Heavy metal pollution in soil, forage, and animals is serious concern nowadays. Current research was conducted in Sargodha to find out the relationship of animals related to the forages and soil pollution. Three sites were selected with three different treatments; site I irrigated with ground water, site II irrigated with the canal water, and site III irrigated with the wastewater. Samples of soil, forage, and animals (blood, hair, feces) were collected from selected sites and were analyzed for metal analysis using atomic absorption spectroscopy. Results indicated that Zn in soil ranged from 24.12 to 37.39 mg/kg; forage, 31.98-44.47 mg/kg; blood of animals, 1.49-2.72 mg/L; hair of animals, 1.37-2.41 mg/kg; and feces of animals, 1.06-2.97 mg/kg. The concentration of zinc in soil and forage was less than permissible limit, but concentration in blood of animals was greater than critical limit suggesting the presence of metal. Bio-concentration factor indicated that metal was accumulated in forages growing at irrigated site. HRI concentration (2.024 mg/kg/day) suggests the accumulation of zinc in animal tissues. Pollution load index and enrichment factor were within the range.


Subject(s)
Metals, Heavy , Soil Pollutants , Animals , Environmental Monitoring/methods , Grassland , Humans , Metals, Heavy/analysis , Risk Assessment , Ruminants , Soil , Soil Pollutants/analysis , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...