Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Dermatol Res ; 315(4): 971-982, 2023 May.
Article in English | MEDLINE | ID: mdl-36416978

ABSTRACT

Light penetration depth in the scalp is a key limitation of low-level light therapy for the treatment of androgenetic alopecia (AGA). A novel light emitting diode (LED) microneedle patch was designed to achieve greater efficacy by enhancing the percutaneous light delivery. The study aimed to investigate the efficacy and safety of this device on hair growth in mice. Thirty-five male C57BL/6 mice which their dorsal skin was split into upper and lower parts to receive either LED irradiation alone or LED irradiation with a microneedle patch. Red (629 nm), green (513 nm), and blue light (465 nm) at an energy dose of 0.2 J/cm2 were applied once daily for 28 days. Outcomes were evaluated weekly using digital photographs. Histopathological findings were assessed using a 6 mm punch biopsy. A significant increase in hair growth was observed in the green light, moderate in the red light, and the lowest in the blue light group. The addition of the microneedle patch to LED irradiation enhanced greater and faster anagen entry in all the groups. Histopathology showed an apparent increase in the number of hair follicles, collagen bundles in the dermis, angiogenesis, and mononuclear cell infiltration after treatment with the green-light LED microneedle patches. No serious adverse effects were observed during the experiment. Our study provides evidence that the newly developed green-light LED microneedle patch caused the optimal telogen-to-anagen transition and could lead to new approaches for AGA. Microneedle stimulation may aid percutaneous light delivery to the target hair follicle stem cells.


Subject(s)
Alopecia , Hair Follicle , Male , Animals , Mice , Mice, Inbred C57BL , Alopecia/drug therapy , Hair Follicle/pathology , Skin/pathology , Scalp
2.
Skin Res Technol ; 28(6): 786-791, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35974467

ABSTRACT

BACKGROUND: Skin rejuvenation plays a significant role in the esthetic medicine market. Microneedle patches have been developed for a wide range of applications based on the principles of transdermal drug delivery; however, clinical trials of microneedle patches for skin rejuvenation remain limited. AIMS: This study was conducted to examine the efficacy of microneedle patches for improving nasolabial folds. METHODS: A total of 23 Thai women completed this prospective clinical trial. The participants were treated according to a split-face design, with application of microneedle patch plus 1.8% hyaluronic acid solution to the right nasolabial fold and microneedle patch alone to the left nasolabial fold. The treatments were applied to the nasolabial fold for 8 weeks. The test areas were measured before treatment and at 2, 4, 8, 12, and 16 weeks after the use of the test product. RESULTS: Combination treatment using the microneedle patch plus hyaluronic acid solution and use of the microneedle patch alone both significantly improved the Merz esthetic scales for nasolabial folds. Measurement of the nasolabial fold showed an improvement in the two groups, with no significant differences between the groups. No adverse effects were reported during the study period. CONCLUSIONS: Application of a microneedle patch with 1.8% hyaluronic acid solution or a microneedle patch alone were both effective treatments for improving facial wrinkles in the nasolabial folds.


Subject(s)
Cosmetic Techniques , Skin Aging , Humans , Female , Nasolabial Fold , Rejuvenation , Hyaluronic Acid , Administration, Cutaneous , Treatment Outcome , Cosmetic Techniques/adverse effects
3.
Talanta ; 249: 123375, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35738204

ABSTRACT

Colorimetric loop-mediated DNA isothermal amplification-based assays have gained momentum in the diagnosis of COVID-19 owing to their unmatched feasibility in low-resource settings. However, the vast majority of them are restricted to proprietary pH-sensitive dyes that limit downstream assay optimization or hinder efficient result interpretation. To address this problem, we developed a novel dual colorimetric RT-LAMP assay using in-house pH-dependent indicators to maximize the visual detection and assay simplicity, and further integrated it with the artificial intelligence (AI) operated tool (RT-LAMP-DETR) to enable a more precise and rapid result analysis in large scale testing. The dual assay leverages xylenol orange (XO) and a newly formulated lavender green (LG) dye for distinctive colorimetric readouts, which enhance the test accuracy when performed and analyzed simultaneously. Our RT-LAMP assay has a detection limit of 50 viral copies/reaction with the cycle threshold (Ct) value ≤ 39.7 ± 0.4 determined by the WHO-approved RT-qPCR assay. RT-LAMP-DETR exhibited a complete concordance with the results from naked-eye observation and RT-qPCR, achieving 100% sensitivity, specificity, and accuracy that altogether render it suitable for ultrasensitive point-of-care COVID-19 screening efforts. From the perspective of pandemic preparedness, our method offers a simpler, faster, and cheaper (∼$8/test) approach for COVID-19 testing and other emerging pathogens with respect to RT-qPCR.


Subject(s)
COVID-19 , Artificial Intelligence , COVID-19/diagnosis , COVID-19 Testing , Colorimetry/methods , DNA , Humans , Nucleic Acid Amplification Techniques/methods , Point-of-Care Systems , RNA , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
4.
Biomacromolecules ; 23(1): 365-376, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34914881

ABSTRACT

Microneedle technology has received considerable attention in transdermal drug delivery system research owing to its minimally invasive and convenient self-administration with enhanced transdermal transport. The pre-drug loading microneedle method has been developed for several protein and chemical medicines. However, the protein activity and efficacy are severely affected owing to protein aggregation. Herein, we aim to develop non-degradable hydrogel photocross-linkable microneedles for suppressing protein aggregation. Four-point star-shaped microneedles are fabricated via a photolithography process, and sulfobetaine (SPB) monomer is combined with dextran-glycidyl methacrylate/acrylic acid to form the hydrogel network. Incorporating zwitterionic poly-sulfobetaine (poly-SPB) in the microneedles enables the protection of proteins from denaturation even under external stress, releases the proteins in their native state (without activity loss), and exhibits sufficient mechanical strength to penetrate porcine skin. The microneedles exhibit a high drug loading capacity along with an efficient drug release rate. The rhodamine B drug loading and release model shows that the microneedles can load 8 µg of drugs on one microneedle patch of 41 needles and release nearly 80% of its load within 1 h. We anticipate that this pre-drug loading platform and the advanced features of the microneedles can provide an effective option for administering therapeutic drugs.


Subject(s)
Polymers , Protein Aggregates , Administration, Cutaneous , Animals , Drug Delivery Systems , Hydrogels/metabolism , Microinjections , Needles , Polymers/metabolism , Skin/metabolism , Swine
5.
ACS Appl Mater Interfaces ; 11(6): 6624-6633, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30656940

ABSTRACT

Thermoelectric generation capable of delivering reliable performance in the low-temperature range (<150 °C) for large-scale deployment has been a challenge mainly due to limited properties of thermoelectric materials. However, realizing interdependence of topological insulators and thermoelectricity, a new research dimension on tailoring and using the topological-insulator boundary states for thermoelectric enhancement has emerged. Here, we demonstrate a promising hybrid nanowire of topological bismuth telluride (Bi2Te3) within the conductive poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) matrix using the in situ one-pot synthesis to be incorporated into a three-dimensional network of self-assembled hybrid thermoelectric nanofilms for the scalable thermoelectric application. Significantly, the nanowire-incorporated film network exhibits simultaneous increase in electrical conductivity and Seebeck coefficient as opposed to reduced thermal conductivity, improving thermoelectric performance. Based on comprehensive measurements for electronic transport of individual nanowires revealing an interfacial conduction path along the Bi2Te3 core inside the encapsulating layer and that the hybrid nanowire is n-type semiconducting, the enhanced thermoelectricity is ascribed to increased hole mobility due to electron transfer from Bi2Te3 to PEDOT:PSS and importantly charge transport via the Bi2Te3-PEDOT:PSS interface. Scaling up the nanostructured material to construct a thermoelectric generator having the generic pipeline-insulator geometry, the device exhibits a power factor and a figure of merit of 7.45 µW m-1 K-2 and 0.048, respectively, with an unprecedented output power of 130 µW and 15 day operational stability at Δ T = 60 °C. Our findings not only encourage a new approach to cost-effective thermoelectric generation, but they could also provide a route for the enhancement of other applications based on the topological nanowire.

6.
RSC Adv ; 9(18): 9878-9886, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-35520914

ABSTRACT

In this study, nitrogen-enriched activated carbon from silkworm pupae waste (P-AC) was successfully prepared and its electrochemical performances in aqueous and organic electrolytes were investigated. Silkworm pupae waste is beneficial because it is a nitrogen-enriched, inexpensive, and locally available material. The preparation process includes hydrothermal treatment of the silkworm pupae waste at 200 °C, and chemical activation using zinc chloride at activation temperatures of 700, 800 and 900 °C (P700, P800, and P900, respectively). The nitrogen content in the P-ACs was approximately 3.8-6.4 at%, decreasing with activation temperature, while the surface area was approximately 1062-1267 m2 g-1, increasing with activation temperature. Compared to a commercial AC, the P-ACs show higher nitrogen content but lower surface area. Furthermore, the P800 exhibited superior specific capacitance (154.6 and 91.6 F g-1 in aqueous and organic electrolytes) compared to a commercial AC despite possessing smaller surface area. The high nitrogen content enhanced the pseudocapacitance and improved the electrical conductivity of the P-ACs. These properties were confirmed by relatively low series and charge transfer resistances, a capacity retention higher than 88% at a current density of 0.5 A g-1 and excellent cycling stability demonstrated by maintaining 97.6% of its capacitance after 3000 cycles. These results demonstrate that silkworm pupae waste is a viable source of nitrogen-enriched AC for application in supercapacitors.

7.
ACS Appl Mater Interfaces ; 10(7): 6433-6440, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29368920

ABSTRACT

Here, we demonstrate a novel device structure design to enhance the electrical conversion output of a triboelectric device through the piezoelectric effect called as the piezo-induced triboelectric (PIT) device. By utilizing the piezopotential of ZnO nanowires embedded into the polydimethylsiloxane (PDMS) layer attached on the top electrode of the conventional triboelectric device (Au/PDMS-Al), the PIT device exhibits an output power density of 50 µW/cm2, which is larger than that of the conventional triboelectric device by up to 100 folds under the external applied force of 8.5 N. We found that the effect of the external piezopotential on the top Au electrode of the triboelectric device not only enhances the electron transfer from the Al electrode to PDMS but also boosts the internal built-in potential of the triboelectric device through an external electric field of the piezoelectric layer. Furthermore, 100 light-emitting diodes (LEDs) could be lighted up via the PIT device, whereas the conventional device could illuminate less than 20 LED bulbs. Thus, our results highlight that the enhancement of the triboelectric output can be achieved by using a PIT device structure, which enables us to develop hybrid nanogenerators for various self-power electronics such as wearable and mobile devices.

8.
Nat Commun ; 4: 2845, 2013.
Article in English | MEDLINE | ID: mdl-24276519

ABSTRACT

Ferroelectric polymers are being actively explored as dielectric materials for electrical energy storage applications. However, their high dielectric constants and outstanding energy densities are accompanied by large dielectric loss due to ferroelectric hysteresis and electrical conduction, resulting in poor charge-discharge efficiencies under high electric fields. To address this long-standing problem, here we report the ferroelectric polymer networks exhibiting significantly reduced dielectric loss, superior polarization and greatly improved breakdown strength and reliability, while maintaining their fast discharge capability at a rate of microseconds. These concurrent improvements lead to unprecedented charge-discharge efficiencies and large values of the discharged energy density and also enable the operation of the ferroelectric polymers at elevated temperatures, which clearly outperforms the melt-extruded ferroelectric polymer films that represents the state of the art in dielectric polymers. The simplicity and scalability of the described method further suggest their potential for high energy density capacitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...