Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 10(5)2022 05.
Article in English | MEDLINE | ID: mdl-35606086

ABSTRACT

BACKGROUND: Cancer immunotherapeutic strategies showed unprecedented results in the clinic. However, many patients do not respond to immuno-oncological treatments due to the occurrence of a plethora of immunological obstacles, including tumor intrinsic mechanisms of resistance to cytotoxic T-cell (TC) attack. Thus, a deeper understanding of these mechanisms is needed to develop successful immunotherapies. METHODS: To identify novel genes that protect tumor cells from effective TC-mediated cytotoxicity, we performed a genetic screening in pancreatic cancer cells challenged with tumor-infiltrating lymphocytes and antigen-specific TCs. RESULTS: The screening revealed 108 potential genes that protected tumor cells from TC attack. Among them, salt-inducible kinase 3 (SIK3) was one of the strongest hits identified in the screening. Both genetic and pharmacological inhibitions of SIK3 in tumor cells dramatically increased TC-mediated cytotoxicity in several in vitro coculture models, using different sources of tumor and TCs. Consistently, adoptive TC transfer of TILs led to tumor growth inhibition of SIK3-depleted cancer cells in vivo. Mechanistic analysis revealed that SIK3 rendered tumor cells susceptible to tumor necrosis factor (TNF) secreted by tumor-activated TCs. SIK3 promoted nuclear factor kappa B (NF-κB) nuclear translocation and inhibited caspase-8 and caspase-9 after TNF stimulation. Chromatin accessibility and transcriptome analyses showed that SIK3 knockdown profoundly impaired the expression of prosurvival genes under the TNF-NF-κB axis. TNF stimulation led to SIK3-dependent phosphorylation of the NF-κB upstream regulators inhibitory-κB kinase and NF-kappa-B inhibitor alpha on the one side, and to inhibition of histone deacetylase 4 on the other side, thus sustaining NF-κB activation and nuclear stabilization. A SIK3-dependent gene signature of TNF-mediated NF-κB activation was found in a majority of pancreatic cancers where it correlated with increased cytotoxic TC activity and poor prognosis. CONCLUSION: Our data reveal an abundant molecular mechanism that protects tumor cells from cytotoxic TC attack and demonstrate that pharmacological inhibition of this pathway is feasible.


Subject(s)
NF-kappa B , Tumor Necrosis Factor-alpha , Apoptosis , Humans , NF-kappa B/metabolism , Phosphorylation , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
Cancer Immunol Res ; 8(9): 1163-1179, 2020 09.
Article in English | MEDLINE | ID: mdl-32665263

ABSTRACT

The success of cancer immunotherapy is limited by resistance to immune checkpoint blockade. We therefore conducted a genetic screen to identify genes that mediated resistance against CTLs in anti-PD-L1 treatment-refractory human tumors. Using PD-L1-positive multiple myeloma cells cocultured with tumor-reactive bone marrow-infiltrating CTL as a model, we identified calcium/calmodulin-dependent protein kinase 1D (CAMK1D) as a key modulator of tumor-intrinsic immune resistance. CAMK1D was coexpressed with PD-L1 in anti-PD-L1/PD-1 treatment-refractory cancer types and correlated with poor prognosis in these tumors. CAMK1D was activated by CTL through Fas-receptor stimulation, which led to CAMK1D binding to and phosphorylating caspase-3, -6, and -7, inhibiting their activation and function. Consistently, CAMK1D mediated immune resistance of murine colorectal cancer cells in vivo The pharmacologic inhibition of CAMK1D, on the other hand, restored the sensitivity toward Fas-ligand treatment in multiple myeloma and uveal melanoma cells in vitro Thus, rapid inhibition of the terminal apoptotic cascade by CAMK1D expressed in anti-PD-L1-refractory tumors via T-cell recognition may have contributed to tumor immune resistance.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 1/immunology , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/transplantation , Animals , B7-H1 Antigen/biosynthesis , B7-H1 Antigen/immunology , Calcium-Calmodulin-Dependent Protein Kinase Type 1/biosynthesis , Drug Resistance, Neoplasm , Humans , Mice , Multiple Myeloma/immunology , Multiple Myeloma/therapy
3.
EMBO Mol Med ; 7(4): 450-63, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25691366

ABSTRACT

The success of T cell-based cancer immunotherapy is limited by tumor's resistance against killing by cytotoxic T lymphocytes (CTLs). Tumor-immune resistance is mediated by cell surface ligands that engage immune-inhibitory receptors on T cells. These ligands represent potent targets for therapeutic inhibition. So far, only few immune-suppressive ligands have been identified. We here describe a rapid high-throughput siRNA-based screening approach that allows a comprehensive identification of ligands on human cancer cells that inhibit CTL-mediated tumor cell killing. We exemplarily demonstrate that CCR9, which is expressed in many cancers, exerts strong immune-regulatory effects on T cell responses in multiple tumors. Unlike PDL1, which inhibits TCR signaling, CCR9 regulates STAT signaling in T cells, resulting in reduced T-helper-1 cytokine secretion and reduced cytotoxic capacity. Moreover, inhibition of CCR9 expression on tumor cells facilitated immunotherapy of human tumors by tumor-specific T cells in vivo. Taken together, this method allows a rapid and comprehensive determination of immune-modulatory genes in human tumors which, as an entity, represent the 'immune modulatome' of cancer.


Subject(s)
CD8-Positive T-Lymphocytes , Immunity, Cellular , Immunotherapy/methods , Neoplasms, Experimental , RNA Interference , Th1 Cells , Animals , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Female , Humans , MCF-7 Cells , Mice , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Receptors, CCR/immunology , Th1 Cells/immunology , Th1 Cells/pathology
4.
Blood ; 121(22): 4493-503, 2013 May 30.
Article in English | MEDLINE | ID: mdl-23603913

ABSTRACT

Although functionally competent cytotoxic, T cells are frequently observed in malignant diseases, they possess little ability to react against tumor cells. This phenomenon is particularly apparent in multiple myeloma. We here demonstrate that cytotoxic T cells reacted against myeloma antigens when presented by autologous dendritic cells, but not by myeloma cells. We further show by gene expression profiling and flow cytometry that, similar to many other malignant tumors, freshly isolated myeloma cells expressed several carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) at varying proportions. Binding and crosslinking of CEACAM-6 by cytotoxic T cells inhibited their activation and resulted in T-cell unresponsiveness. Blocking of CEACAM-6 on the surface of myeloma cells by specific monoclonal antibodies or CEACAM-6 gene knock down by short interfering RNA restored T-cell reactivity against malignant plasma cells. These findings suggest that CEACAM-6 plays an important role in the regulation of CD8+ T-cell responses against multiple myeloma; therefore, therapeutic targeting of CEACAM-6 may be a promising strategy to improve myeloma immunotherapy.


Subject(s)
Antigens, CD/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Adhesion Molecules/immunology , Multiple Myeloma/immunology , T-Lymphocytes, Cytotoxic/immunology , Antigens, CD/genetics , Antigens, CD/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Coculture Techniques , Cytotoxicity, Immunologic/genetics , Cytotoxicity, Immunologic/immunology , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Humans , Immunotherapy/methods , MCF-7 Cells , Multiple Myeloma/pathology , Multiple Myeloma/therapy , Plasma Cells/immunology , Plasma Cells/metabolism , Plasma Cells/pathology , RNA, Small Interfering/genetics , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/metabolism , Tumor Cells, Cultured , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...