Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters











Publication year range
1.
J Neurosci ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39317473

ABSTRACT

Experience and activity-dependent transcription is a candidate mechanism to mediate development and refinement of specific cortical circuits. Here we demonstrate that the activity-dependent transcription factor Myocyte-Enhancer Factor 2C (MEF2C) is required in both presynaptic layer 4 (L4) and postsynaptic L2/3 mouse (male and female) somatosensory (S1) cortical neurons for development of this specific synaptic connection. While postsynaptic deletion of Mef2c weakens L4 synaptic inputs, it has no effect on inputs from local L2/3, contralateral S1, or ipsilateral frontal/motor cortex. Similarly, homozygous, or heterozygous deletion of Mef2c in presynaptic L4 neurons weakens L4 to L2/3 excitatory synaptic inputs by decreasing presynaptic release probability. Postsynaptic MEF2C is specifically required during an early postnatal, experience-dependent, period for L4 to L2/3 synapse function and expression of transcriptionally active MEF2C (MEF2C-VP16) rescues weak L4 to L2/3 synaptic strength in sensory deprived mice. Together these results suggest that experience and/or activity-dependent transcriptional activation of MEF2C promotes development of L4 to L2/3 synapses. MEF2C regulated expression of many pre- and postsynaptic genes in postnatal cortical neurons. Interestingly, MEF2C was necessary for activity-dependent expression of many presynaptic genes, including those that function in transsynaptic adhesion and neurotransmitter release. This work provides mechanistic insight into the experience-dependent development of specific cortical circuits.Significance Statement Experience-driven neuronal activity is necessary for the development of synaptic connectivity of specific cortical circuits. Here we demonstrate that the activity-dependent transcription factor MEF2C is necessary for development of a specific synaptic connection between Layer (L)4 and L2/3 neurons in mouse somatosensory cortex. MEF2C is required in both presynaptic L4 and postsynaptic L2/3 neurons during an early postnatal and experience-dependent period for development of their connection. Our results suggest that sensory experience drives transcriptional activation of MEF2C to promote development of the L4 to L2/3 synaptic connection. We identify activity-dependent, MEF2C- regulated presynaptic genes that promote development of specific connections. This work provides insight into the mechanisms by which sensory experience determines development of cortical circuit connectivity.

2.
Virusdisease ; 35(2): 329-337, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39071879

ABSTRACT

The inhibition of p38 mitogen-activated protein kinase (p38-MAPK) by small molecule chemical inhibitors was previously shown to impair severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, however, mechanisms underlying antiviral activity remains unexplored. In this study, reduced growth of SARS-CoV-2 in p38-α knockout Vero cells, together with enhanced viral yield in cells transfected with construct expressing p38α, suggested that p38-MAPK is essential for the propagation of SARS-CoV-2. The SARS-CoV-2 was also shown to induce phosphorylation (activation) of p38, at time when transcription/translational activities are considered to be at the peak levels. Further, we demonstrated that p38 supports viral RNA/protein synthesis without affecting viral attachment, entry, and budding in the target cells. In conclusion, we provide mechanistic insights on the regulation of SARS-CoV-2 replication by p38 MAPK.

3.
Cell Rep ; 43(5): 114257, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38761373

ABSTRACT

Spiny projection neurons (SPNs) of the striatum are critical in integrating neurochemical information to coordinate motor and reward-based behavior. Mutations in the regulatory transcription factors expressed in SPNs can result in neurodevelopmental disorders (NDDs). Paralogous transcription factors Foxp1 and Foxp2, which are both expressed in the dopamine receptor 1 (D1) expressing SPNs, are known to have variants implicated in NDDs. Utilizing mice with a D1-SPN-specific loss of Foxp1, Foxp2, or both and a combination of behavior, electrophysiology, and cell-type-specific genomic analysis, loss of both genes results in impaired motor and social behavior as well as increased firing of the D1-SPNs. Differential gene expression analysis implicates genes involved in autism risk, electrophysiological properties, and neuronal development and function. Viral-mediated re-expression of Foxp1 into the double knockouts is sufficient to restore electrophysiological and behavioral deficits. These data indicate complementary roles between Foxp1 and Foxp2 in the D1-SPNs.


Subject(s)
Corpus Striatum , Forkhead Transcription Factors , Animals , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Mice , Corpus Striatum/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Mice, Knockout , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/genetics , Male , Neurons/metabolism , Mice, Inbred C57BL , Social Behavior
4.
Sci Adv ; 10(18): eadm7039, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701209

ABSTRACT

Long-range glutamatergic inputs originating from the cortex and thalamus are indispensable for striatal development, providing the foundation for motor and cognitive functions. Despite their significance, transcriptional regulation governing these inputs remains largely unknown. We investigated the role of a transcription factor encoded by a high-risk autism-associated gene, FOXP1, in sculpting glutamatergic inputs onto spiny projection neurons (SPNs) within the striatum. We find a neuron subtype-specific role of FOXP1 in strengthening and maturing glutamatergic inputs onto dopamine receptor 2-expressing SPNs (D2 SPNs). We also find that FOXP1 promotes synaptically driven excitability in these neurons. Using single-nuclei RNA sequencing, we identify candidate genes that mediate these cell-autonomous processes through postnatal FOXP1 function at the post-synapse. Last, we demonstrate that postnatal FOXP1 reinstatement rescues electrophysiological deficits, cell type-specific gene expression changes, and behavioral phenotypes. Together, this study enhances our understanding of striatal circuit development and provides proof of concept for a therapeutic approach for FOXP1 syndrome and other neurodevelopmental disorders.


Subject(s)
Corpus Striatum , Forkhead Transcription Factors , Neurons , Receptors, Dopamine D2 , Repressor Proteins , Animals , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Corpus Striatum/metabolism , Corpus Striatum/cytology , Mice , Neurons/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Phenotype , Synapses/metabolism , Synapses/physiology , Male
5.
Sci Total Environ ; 912: 169132, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38070555

ABSTRACT

Persistent nanoplastics (NPs) and their interaction with ubiquitous iron oxide minerals (IOMs) require a detailed understanding to dictate NPs fate and transport in aqueous and subsurface environments. Current study emphasizes on understanding nanoplastics (NPs) interaction with magnetite, and its weathering-originated mineral colloids, i.e., maghemite and hematite under varying environmental conditions (pH, humic acid, ionic strength and water matrix). Results showed that the higher surface hydroxyl group, smaller particle size, and positive surface charge of magnetite led to maximum NPs sorption (805.8 mg/g) in comparison to maghemite (602 mg/g) and hematite (384.3 mg/g). Charge distribution and sedimentation kinetic studies in bimodal systems showed enhanced coagulation in magnetite-NPs system. FTIR and XPS analysis of NPs-IOMs reaction precipitate revealed the vital role of surface functionality in their interaction. Column experiments revealed higher NPs retention in IOMs-coated quartz sand than bare quartz sand. Further, in river water (RW), magnetite-coated sand has shown maximum NPs retention (>80 %) than maghemite (62 %) and hematite (52 %), suggesting limited NPs mobility in the presence of magnetite in subsurface conditions. These findings elucidated the dependence of NPs fate on IOMs in freshwater systems and illustrated IOMs impact on NPs mobility in the subsurface porous environment.

6.
bioRxiv ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37961477

ABSTRACT

Long-range glutamatergic inputs from the cortex and thalamus are critical for motor and cognitive processing in the striatum. Transcription factors that orchestrate the development of these inputs are largely unknown. We investigated the role of a transcription factor and high-risk autism-associated gene, FOXP1, in the development of glutamatergic inputs onto spiny projection neurons (SPNs) in the striatum. We find that FOXP1 robustly drives the strengthening and maturation of glutamatergic input onto dopamine receptor 2-expressing SPNs (D2 SPNs) but has a comparatively milder effect on D1 SPNs. This process is cell-autonomous and is likely mediated through postnatal FOXP1 function at the postsynapse. We identified postsynaptic FOXP1-regulated transcripts as potential candidates for mediating these effects. Postnatal reinstatement of FOXP1 rescues electrophysiological deficits, reverses gene expression alterations resulting from embryonic deletion, and mitigates behavioral phenotypes. These results provide support for a possible therapeutic approach for individuals with FOXP1 syndrome.

7.
Environ Res ; 235: 116605, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37437871

ABSTRACT

The unceasing release of tiny plastics (microplastics and nanoplastics) and their additives, like metal ions, into the aquatic systems from industries and other sources is a globally escalating problem. Their combined toxic effects and human health hazard are already proven; hence, their remediation is requisite. This study utilised the nano-zerovalent iron-loaded sugarcane bagasse-derived biochar (nZVI-SBC) for simultaneous removal of Nanoplastics (NPs) of different functionality and size along with metal ions (Ni2+, Cd2+, AsO43-, and CrO42-). Batch and column experiments were conducted, and the results showed an efficient removal of contaminants with maximum sorption of carboxylate-modified NPs of size 500 nm (qmax = 90.3 mg/g) among all three NPs types. Significant removal was observed in Cd2+ in case of cations and CrO42- in case of anions with qmax = 44.0 and 87.8 mg/g, respectively. Kinetics and the isotherm modelling better fitted the pseudo-second-order kinetic model and Sips isotherm model, respectively for both NPs and metal ions. The designed material worked well in pH range of 4-8, ionic strength 1-20 mM and in complex aqueous matrices, with >90% removal. FTIR, zeta potential and the imaging analysis of the reaction precipitates confirmed the electrostatic attraction, pore retention and complexation as the potential mechanisms for removing NPs, whereas, XPS studies confirmed the reduction co-precipitation and surface complexation as the possible mechanism for removing metal ions. High values of attachment efficiency factor calculated from colloidal filtration theory (CFT) validated the experimental results and justified the high sorption of carboxylate modified 500 nm NPs particles. The synthesized material successfully removed both NPs of varying size and functionality and metal ions simultaneously with significant efficacy in complex environmental samples proving the broad applicability of material in realistic environmental conditions and different types of water treatment processes.


Subject(s)
Metals, Heavy , Nanoparticles , Saccharum , Water Pollutants, Chemical , Humans , Iron/analysis , Plastics , Cellulose , Cadmium/analysis , Microplastics , Water Pollutants, Chemical/analysis , Ions , Oxidation-Reduction , Adsorption , Kinetics
8.
bioRxiv ; 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37425820

ABSTRACT

Spiny projection neurons (SPNs) of the striatum are critical in integrating neurochemical information to coordinate motor and reward-based behavior. Mutations in the regulatory transcription factors expressed in SPNs can result in neurodevelopmental disorders (NDDs). Paralogous transcription factors Foxp1 and Foxp2, which are both expressed in the dopamine receptor 1 (D1) expressing SPNs, are known to have variants implicated in NDDs. Utilizing mice with a D1-SPN specific loss of Foxp1, Foxp2, or both and a combination of behavior, electrophysiology, and cell-type specific genomic analysis, loss of both genes results in impaired motor and social behavior as well as increased firing of the D1-SPNs. Differential gene expression analysis implicates genes involved in autism risk, electrophysiological properties, and neuronal development and function. Viral mediated re-expression of Foxp1 into the double knockouts was sufficient to restore electrophysiological and behavioral deficits. These data indicate complementary roles between Foxp1 and Foxp2 in the D1-SPNs.

9.
Nat Cancer ; 4(6): 893-907, 2023 06.
Article in English | MEDLINE | ID: mdl-37248394

ABSTRACT

Disseminated tumor cells with metabolic flexibility to utilize available nutrients in distal organs persist, but the precise mechanisms that facilitate metabolic adaptations remain unclear. Here we show fragmented mitochondrial puncta in latent brain metastatic (Lat) cells enable fatty acid oxidation (FAO) to sustain cellular bioenergetics and maintain redox homeostasis. Depleting the enriched dynamin-related protein 1 (DRP1) and limiting mitochondrial plasticity in Lat cells results in increased lipid droplet accumulation, impaired FAO and attenuated metastasis. Likewise, pharmacological inhibition of DRP1 using a small-molecule brain-permeable inhibitor attenuated metastatic burden in preclinical models. In agreement with these findings, increased phospho-DRP1 expression was observed in metachronous brain metastasis compared with patient-matched primary tumors. Overall, our findings reveal the pivotal role of mitochondrial plasticity in supporting the survival of Lat cells and highlight the therapeutic potential of targeting cellular plasticity programs in combination with tumor-specific alterations to prevent metastatic recurrences.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Dynamins/metabolism , Mitochondria/metabolism , Cell Line, Tumor , Brain Neoplasms/drug therapy
10.
Virulence ; 14(1): 2190647, 2023 12.
Article in English | MEDLINE | ID: mdl-36919498

ABSTRACT

Lumpy skin disease (LSD) was reported for the first time in India in 2019 and since then, it has become endemic. Since a homologous (LSD-virus based) vaccine was not available in the country, goatpox virus (GPV)-based heterologous vaccine was authorized for mass immunization to induce protection against LSD in cattle. This study describes the evaluation of safety, immunogenicity and efficacy of a new live-attenuated LSD vaccine developed by using an Indian field strain, isolated in 2019 from cattle. The virus was attenuated by continuous passage (P = 50) in Vero cells. The vaccine (50th LSDV passage in Vero cells, named as Lumpi-ProVacInd) did not induce any local or systemic reaction upon its experimental inoculation in calves (n = 10). At day 30 post-vaccination (pv), the vaccinated animals were shown to develop antibody- and cell-mediated immune responses and exhibited complete protection upon virulent LSDV challenge. A minimum Neethling response (0.018% animals; 5 out of 26,940 animals) of the vaccine was observed in the field trials conducted in 26,940 animals. There was no significant reduction in the milk yield in lactating animals (n = 10108), besides there was no abortion or any other reproductive disorder in the pregnant animals (n = 2889). Sero-conversion was observed in 85.18% animals in the field by day 30 pv.


Subject(s)
Lumpy Skin Disease , Lumpy skin disease virus , Viral Vaccines , Animals , Cattle , Female , Chlorocebus aethiops , Lumpy Skin Disease/prevention & control , Lumpy Skin Disease/epidemiology , Lumpy skin disease virus/genetics , Vaccines, Attenuated/adverse effects , Vero Cells , Viral Vaccines/administration & dosage
11.
Sci Rep ; 12(1): 17811, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36280692

ABSTRACT

Rho-associated coiled-coil containing protein kinase 1 (ROCK1) intracellular cell signaling pathway regulates cell morphology, polarity, and cytoskeletal remodeling. We observed the activation of ROCK1/myosin light chain (MLC2) signaling pathway in buffalopox virus (BPXV) infected Vero cells. ROCK1 depletion by siRNA and specific small molecule chemical inhibitors (Thiazovivin and Y27632) resulted in a reduced BPXV replication, as evidenced by reductions in viral mRNA/protein synthesis, genome copy numbers and progeny virus particles. Further, we demonstrated that ROCK1 inhibition promotes deadenylation of viral mRNA (mRNA decay), mediated via inhibiting interaction with PABP [(poly(A)-binding protein] and enhancing the expression of CCR4-NOT (a multi-protein complex that plays an important role in deadenylation of mRNA). In addition, ROCK1/MLC2 mediated cell contraction, and perinuclear accumulation of p-MLC2 was shown to positively correlate with viral mRNA/protein synthesis. Finally, it was demonstrated that the long-term sequential passage (P = 50) of BPXV in the presence of Thiazovivin does not select for any drug-resistant virus variants. In conclusion, ROCK1/MLC2 cell signaling pathway facilitates BPXV replication by preventing viral mRNA decay and that the inhibitors targeting this pathway may have novel therapeutic effects against buffalopox.


Subject(s)
Vaccinia virus , rho-Associated Kinases , Chlorocebus aethiops , Animals , rho-Associated Kinases/metabolism , Vaccinia virus/genetics , Myosin Light Chains/genetics , Myosin Light Chains/metabolism , RNA, Messenger/genetics , Vero Cells , RNA, Small Interfering
12.
Chemosphere ; 308(Pt 3): 136376, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36113660

ABSTRACT

Simultaneous removal of a wide range of toxic heavy metal cations and potential radionuclides from water bodies and their continuous filtration with a single low-cost and eco-friendly material represents several scientific merits. Herein, for the first time, we report the simple and straightforward wet-chemical synthesis of novel nano-Farringtonite (FAR) composed of magnesium and phosphate ions. Further, the potential of known alternate nano-hydroxyapatite (HAP) and novel engineered nano-FAR including their non-stoichiometric variations was evaluated for the removal of mimicking radionuclide (Sr2+) and heavy metals (Cd2+, and Zn2+) from water bodies. Non-stoichiometric FAR (ns-FAR) have shown multifold higher contaminant removal capacities than HAP, i.e., Sr2+≈ 85 mg/g vs 49.5 mg/g, Cd2+≈ 560 mg/g vs 98.5 mg/g, and Zn2+ = 489 mg/g vs 62 mg/g in batch mode. NsFAR showed complete removal of Cd2+ and Zn2+ with <20% and 0% recovery, respectively in three consecutive sorption-recovery cycles, probing towards permanent incorporation of these ions. Spectroscopic analysis and extended x-ray absorption fine structure (EXAFS) spectroscopy fitting confirmed ion exchange and crystal incorporation as probable removal mechanisms. The high ionic potential of Mg2+ allows easy ion exchange with +2 charged metal toxins of varying ionic radius at both Mg1 and Mg2 sites of FAR. nsFAR showed instantaneous separation of these cations in continuous column mode with >2,00,000 L/kg of water filtration capacity (at 1 mg/L), justifying the adsorbent's candidature in water purification applications.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Water Purification , Adsorption , Cadmium/analysis , Cations/chemistry , Durapatite/chemistry , Hydrogen-Ion Concentration , Kinetics , Magnesium/chemistry , Metals, Heavy/analysis , Radioisotopes/analysis , Water , Water Pollutants, Chemical/analysis , Water Purification/methods , X-Rays
13.
Mol Psychiatry ; 27(12): 5213-5226, 2022 12.
Article in English | MEDLINE | ID: mdl-36028572

ABSTRACT

The excitatory neurotransmitter glutamate shapes learning and memory, but the underlying epigenetic mechanism of glutamate regulation in neuron remains poorly understood. Here, we showed that lysine demethylase KDM6B was expressed in excitatory neurons and declined in hippocampus with age. Conditional knockout of KDM6B in excitatory neurons reduced spine density, synaptic vesicle number and synaptic activity, and impaired learning and memory without obvious effect on brain morphology in mice. Mechanistically, KDM6B upregulated vesicular glutamate transporter 1 and 2 (VGLUT1/2) in neurons through demethylating H3K27me3 at their promoters. Tau interacted and recruited KDM6B to the promoters of Slc17a7 and Slc17a6, leading to a decrease in local H3K27me3 levels and induction of VGLUT1/2 expression in neurons, which could be prevented by loss of Tau. Ectopic expression of KDM6B, VGLUT1, or VGLUT2 restored spine density and synaptic activity in KDM6B-deficient cortical neurons. Collectively, these findings unravel a fundamental mechanism underlying epigenetic regulation of synaptic plasticity and cognition.


Subject(s)
Epigenesis, Genetic , Jumonji Domain-Containing Histone Demethylases , Neuronal Plasticity , tau Proteins , Animals , Mice , Cognition/physiology , Glutamic Acid/metabolism , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Neuronal Plasticity/genetics , Neuronal Plasticity/physiology , Synapses/metabolism , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 2/genetics , Vesicular Glutamate Transport Protein 2/metabolism , tau Proteins/metabolism
14.
Chemosphere ; 308(Pt 1): 136091, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36002060

ABSTRACT

The release of metal-based nanoparticles (MNPs) and nanoplastic debris (NPDs) has become ubiquitous in the natural ecosystem. Interaction between MNPs and NPDs may alter their fate and transport in the sub-surface environment and have not been addressed so far. Therefore, the present study has explored the role of NPDs on the stability and mobility of extensively used MNPs, i.e., CuO nanoparticles (NPs) under varying soil solutions (SS) chemistry. In the absence of NPDs, a very high aggregation of CuO NPs observed in SS extracted from black, lateritic, and red soils, which can be correlated with ionic strength (IS) and type of ionic species. The sedimentation rate (ksed(1/h)) for CuO NPs was >0.5 h-1 in the case of these SS. Interestingly, the stability and sedimentation behavior of CuO NPs varied significantly in the presence of NPDs. The ksed for CuO NPs decreased to half and found <0.25 h-1 in the presence of NPDs in all SS. C/C0 values in breakthrough curves increased drastically (black < alluvial < laterite < red) in presence of NPDs. Results suggest that the release of NPDs in the terrestrial ecosystem is a potential threat leading to increased mobility of MNPs in the environment.


Subject(s)
Metal Nanoparticles , Nanoparticles , Copper , Ecosystem , Microplastics , Oxides , Soil , Solutions
15.
Mol Biol Evol ; 39(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-35975687

ABSTRACT

Host-dependency factors have increasingly been targeted to minimize antiviral drug resistance. In this study, we have demonstrated that inhibition of p38 mitogen-activated protein kinase (a cellular protein) suppresses buffalopox virus (BPXV) protein synthesis by targeting p38-MNK1-eIF4E signaling pathway. In order to provide insights into the evolution of drug resistance, we selected resistant mutants by long-term sequential passages (P; n = 60) in the presence of p38 inhibitor (SB239063). The P60-SB239063 virus exhibited significant resistance to SB239063 as compared to the P60-Control virus. To provide mechanistic insights on the acquisition of resistance by BPXV-P60-SB239063, we generated p38-α and p38-ϒ (isoforms of p38) knockout Vero cells by CRISPR/Cas9-mediated genome editing. It was demonstrated that unlike the wild type (WT) virus which is dependent on p38-α isoform, the resistant virus (BPXV-P60-SB239063) switches over to use p38-ϒ so as to efficiently replicate in the target cells. This is a rare evidence wherein a virus was shown to bypass the dependency on a critical cellular factor under selective pressure of a drug.


Subject(s)
Antiviral Agents , Vaccinia virus , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , Drug Resistance, Viral/genetics , Vaccinia virus/metabolism , Vero Cells , p38 Mitogen-Activated Protein Kinases/metabolism
16.
Antiviral Res ; 197: 105232, 2022 01.
Article in English | MEDLINE | ID: mdl-34968527

ABSTRACT

We report the in vitro antiviral activity of DZNep (3-Deazaneplanocin A; an inhibitor of S-adenosylmethionine-dependent methyltransferase) against SARS-CoV-2, besides demonstrating its protective efficacy against lethal infection of infectious bronchitis virus (IBV, a member of the Coronaviridae family). DZNep treatment resulted in reduced synthesis of SARS-CoV-2 RNA and proteins without affecting other steps of viral life cycle. We demonstrated that deposition of N6-methyl adenosine (m6A) in SARS-CoV-2 RNA in the infected cells recruits heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), an RNA binding protein which serves as a m6A reader. DZNep inhibited the recruitment of hnRNPA1 at m6A-modified SARS-CoV-2 RNA which eventually suppressed the synthesis of the viral genome. In addition, m6A-marked RNA and hnRNPA1 interaction was also shown to regulate early translation to replication switch of SARS-CoV-2 genome. Furthermore, abrogation of methylation by DZNep also resulted in defective synthesis of the 5' cap of viral RNA, thereby resulting in its failure to interact with eIF4E (a cap-binding protein), eventually leading to a decreased synthesis of viral proteins. Most importantly, DZNep-resistant mutants could not be observed upon long-term sequential passage of SARS-CoV-2 in cell culture. In summary, we report the novel role of methylation in the life cycle of SARS-CoV-2 and propose that targeting the methylome using DZNep could be of significant therapeutic value against SARS-CoV-2 infection.


Subject(s)
Adenosine/analogs & derivatives , Genome, Viral/drug effects , Methyltransferases/antagonists & inhibitors , SARS-CoV-2/drug effects , Adenosine/pharmacology , Animals , Chick Embryo , Chlorocebus aethiops , Chromatin Immunoprecipitation Sequencing , DNA Methylation/drug effects , DNA Methylation/physiology , Drug Resistance, Viral/drug effects , Genome, Viral/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Humans , Lethal Dose 50 , Mice , Protein Biosynthesis/drug effects , RNA, Viral/drug effects , RNA, Viral/metabolism , Rabbits , SARS-CoV-2/genetics , Specific Pathogen-Free Organisms , Transcription, Genetic/drug effects , Vero Cells
17.
Sci Total Environ ; 818: 151831, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34813809

ABSTRACT

Despite the massive accumulation of nanoplastics (NPs) in the freshwater system, research so far has highly focused on the marine environment. NPs interaction with mineral surfaces can influence their fate in freshwater, which will further impact their bioavailability and transport to the oceans. Current work focuses on understanding NPs interaction with weathering sequence of minerals in freshwater under varying geochemical conditions. Primary mineral feldspar and weathering originated secondary minerals, i.e., kaolinite and gibbsite, were investigated for interaction with NPs under batch mode under relevant environmental conditions. Minerals-NPs interaction was also investigated in natural water samples. Results showed that the amorphous nature, small particle size, and positive surface charge of gibbsite resulted in multi-fold sorption of NPs (108.1 mg/g) compared to feldspar (7.7 mg/g) and kaolinite (11.9 mg/g). FTIR spectroscopy revealed hydrogen bonding and complexation as major players in gibbsite-NPs interaction suggesting the possibility of their co-precipitation. The continuous adsorption-desorption and limited sorption capacity of feldspar and kaolinite can be attributed to their negative surface charge, larger size, crystalline nature, and physical sorption. Therefore, both minerals may co-transport and enhance the mobility of NPs.


Subject(s)
Kaolin , Microplastics , Adsorption , Aluminum Silicates , Kaolin/chemistry , Minerals/chemistry , Potassium Compounds
18.
Environ Res ; 203: 111885, 2022 01.
Article in English | MEDLINE | ID: mdl-34390712

ABSTRACT

The extensive application of metal oxide nanoparticles (NPs) in various sectors has raised concern about their subsequent release and potentially harmful impacts on the soil system. The present study has addressed the interaction of CuO NPs with bentonite clay colloids (CC) under varying environmental parameters as a model to represent the soil pore water scenario. Based on CuO - CC interaction in model and natural soil solution extracts (SSE), the role of clay fraction and their stability on CuO retention in various types of soils have been evaluated. Results suggested that increasing ionic strength (IS) in the system caused aggregation of CuO NPs, and in the presence of CC, critical coagulation concentration decreased drastically from 27.8 and 17.3 mM to 10.7 and 0.33 mM for NaCl and CaCl2 respectively, due to heteroaggregation in the system. Interestingly, in the SSE, the dominating role of ionic valency, dissolved organic carbon (DOC), and CC was observed in colloidal stabilization over IS. No significant impact of temperature was observed on the stability of CuO NPs both in model and SSE. Further, stability studies in the SSE were correlated with NPs retention behavior in soils. Observations suggest that retention of CuO NPs in soils is a function of binding of the colloidal fraction to the soil, which in turn depends on the colloidal stability. The highest retention was observed in black and laterite soils, whereas lower binding of clay fraction in red soil caused the least retention. A decrease in Kd values after a certain application concentration provided maximum sustainable application concentration of CuO NPs, which may vary with soil properties. Results suggest that the binding of clay and organic matter with a sandy matrix of soil plays a prime role in deciding the overall fate of CuO NPs in the soils.


Subject(s)
Metal Nanoparticles , Nanoparticles , Clay , Colloids , Copper/analysis , Dissolved Organic Matter , Soil
19.
Front Cell Infect Microbiol ; 11: 771524, 2021.
Article in English | MEDLINE | ID: mdl-34888260

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly evolved to generate several antigenic variants. These variants have raised concerns whether pre-existing immunity to vaccination or prior infection would be able to protect against the newly emerging SARS-CoV-2 variants or not. We isolated SARS-CoV-2 from the coronavirus disease 2019 (COVID-19)-confirmed patients in the beginning of the first (April/May 2020) and second (April/May 2021) waves of COVID-19 in India (Hisar, Haryana). Upon complete nucleotide sequencing, the viruses were found to be genetically related with wild-type (WT) and Delta variants of SARS-CoV-2, respectively. The Delta variant of SARS-CoV-2 produced a rapid cytopathic effect (24-36 h as compared to 48-72 h in WT) and had bigger plaque size but a shorter life cycle (~6 h as compared to the ~8 h in WT). Furthermore, the Delta variant achieved peak viral titers within 24 h as compared to the 48 h in WT. These evidence suggested that the Delta variant replicates significantly faster than the WT SARS-CoV-2. The virus neutralization experiments indicated that antibodies elicited by vaccination are more efficacious in neutralizing the WT virus but significantly less potent against the Delta variant. Our findings have implications in devising suitable vaccination, diagnostic and therapeutic strategies, besides providing insights into understanding virus replication and transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Spike Glycoprotein, Coronavirus
20.
Chem Commun (Camb) ; 57(59): 7280-7283, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34212165

ABSTRACT

A strategic modification involving (i) a multi-functional almond shell biochar surface support and (ii) capping with almond skin extracted antioxidants was performed to preserve redox-sensitive Fe0 nanoparticles (NPs). pXRD data showed generation of an iron-carbonyl shell on the supported Fe0 NPs (SA-Fe0), justifying successful antioxidant capping. The total metal removal capacity of 695 mg g-1i.e. AsO2- (300.2 mg g-1) > Cd2+ (224.2 mg g-1) > CrO42- (125.2 mg g-1) > Ni2+ (44.5 mg g-1) in batch mode, and 102 mg g-1 in continuous column setup confirms the excellent reactivity of the SA-Fe0 nanocomposite. Loss of the iron-carbonyl shell and iron oxidation during interaction with contaminants confirm no hindrance in electron transfer due to antioxidant capping.

SELECTION OF CITATIONS
SEARCH DETAIL