Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Mol Breed ; 44(2): 13, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38317771

ABSTRACT

Tomato (Solanum lycopersicum L.) is one of the most important crops in the world for its fruit production. Advances in cutting-edge techniques have enabled the development of numerous critical traits related to the quality and quantity of tomatoes. Genetic engineering techniques, such as gene transformation and gene editing, have emerged as powerful tools for generating new plant varieties with superior traits. In this study, we induced parthenocarpic traits in a population of elite tomato (ET) lines. At first, the adaptability of ET lines to genetic transformation was evaluated to identify the best-performing lines by transforming the SlANT1 gene overexpression cassette and then later used to produce the SlIAA9 knockout lines using the CRISPR/Cas9 system. ET5 and ET8 emerged as excellent materials for these techniques and showed higher efficiency. Typical phenotypes of knockout sliaa9 were clearly visible in G0 and G1 plants, in which simple leaves and parthenocarpic fruits were observed. The high efficiency of the CRISPR/Cas9 system in developing new tomato varieties with desired traits in a short period was demonstrated by generating T-DNA-free homozygous sliaa9 knockout plants in the G1 generation. Additionally, a simple artificial fertilization method was successfully applied to recover seed production from parthenocarpic plants, securing the use of these varieties as breeding materials. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01452-1.

2.
Foods ; 12(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37444239

ABSTRACT

This is the first investigation, conducted in a completely randomized design (CRD), to determine the effects of different salinity levels (75 and 150 mM) and germination periods (3, 4, and 5 days) on momilactone and phenolic accumulations in germinated brown rice (GBR) var. Koshihikari. Particularly, the identification of bioactive compounds was confirmed using electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy (1H and 13C). Momilactone A (MA) and momilactone B (MB) amounts were determined by ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS), whereas other compounds were quantified by spectrophotometry and high-performance liquid chromatography (HPLC). Accordingly, GBR under B2 treatment (75 mM salinity for 4 days) showed the greatest total phenolic and flavonoid contents (14.50 mg gallic acid and 11.06 mg rutin equivalents, respectively, per g dry weight). GBR treated with B2 also accumulated the highest quantities of MA, MB, ρ-coumaric, ferulic, cinnamic, salicylic acids, and tricin (18.94, 41.00, 93.77, 139.03, 46.05, 596.26, and 107.63 µg/g DW, respectively), which were consistent with the strongest antiradical activities in DPPH and ABTS assays (IC50 = 1.58 and 1.78 mg/mL, respectively). These findings have implications for promoting the value of GBR consumption and rice-based products that benefit human health.

3.
Plants (Basel) ; 12(12)2023 Jun 18.
Article in English | MEDLINE | ID: mdl-37375984

ABSTRACT

Salinity is a severe stress that causes serious losses in rice production worldwide. This study, for the first time, investigated the effects of fulvic acid (FA) with various concentrations of 0.125, 0.25, 0.5, and 1.0 mL/L on the ability of three rice varieties, Koshihikari, Nipponbare, and Akitakomachi, to cope with a 10 dS/m salinity level. The results show that the T3 treatment (0.25 mL/L FA) is the most effective in stimulating the salinity tolerance of all three varieties by enhancing their growth performance. T3 also promotes phenolic accumulation in all three varieties. In particular, salicylic acid, a well-known salt-stress-resistant substance, is found to increase during salinity stress in Nipponbare and Akitakomachi treated with T3 by 88% and 60%, respectively, compared to crops receiving salinity treatment alone. Noticeably, the levels of momilactones A (MA) and B (MB) fall in salt-affected rice. However, their levels markedly rise in rice treated with T3 (by 50.49% and 32.20%, respectively, in Nipponbare, and by 67.76% and 47.27%, respectively, in Akitakomachi), compared to crops receiving salinity treatment alone. This implies that momilactone levels are proportional to rice tolerance against salinity. Our findings suggest that FA (0.25 mL/L) can effectively improve the salinity tolerance of rice seedlings even in the presence of a strong salt stress of 10 dS/m. Further studies on FA application in salt-affected rice fields should be conducted to confirm its practical implications.

4.
J Fungi (Basel) ; 9(2)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36836358

ABSTRACT

Sweet pepper (Capsicum annuum L.), also known as bell pepper, is one of the most widely grown vegetable crops worldwide. It is attacked by numerous phytopathogenic fungi, such as Fusarium equiseti, the causal agent of Fusarium wilt disease. In the current study, we proposed two benzimidazole derivatives, including 2-(2-hydroxyphenyl)-1-H benzimidazole (HPBI) and its aluminum complex (Al-HPBI complex), as potential control alternatives to F. equiseti. Our findings showed that both compounds demonstrated dose-dependent antifungal activity against F. equiseti in vitro and significantly suppressed disease development in pepper plants under greenhouse conditions. According to in silico analysis, the F. equiseti genome possesses a predicted Sterol 24-C-methyltransferase (FeEGR6) protein that shares a high degree of homology with EGR6 from F. oxysporum (FoEGR6). It is worth mentioning that molecular docking analysis confirmed that both compounds can interact with FeEGR6 from F. equiseti as well as FoEGR6 from F. oxysporum. Moreover, root application of HPBI and its aluminum complex significantly enhanced the enzymatic activities of guaiacol-dependent peroxidases (POX), polyphenol oxidase (PPO), and upregulated four antioxidant-related enzymes, including superoxide dismutase [Cu-Zn] (CaSOD-Cu), L-ascorbate peroxidase 1, cytosolic (CaAPX), glutathione reductase, chloroplastic (CaGR), and monodehydroascorbate reductase (CaMDHAR). Additionally, both benzimidazole derivatives induced the accumulation of total soluble phenolics and total soluble flavonoids. Collectively, these findings suggest that the application of HPBI and Al-HPBI complex induce both enzymatic and nonenzymatic antioxidant defense machinery.

5.
Foods ; 11(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36496697

ABSTRACT

The aqueous extract of kava (Piper methysticum) root is known as a traditional beverage for daily intake in the Western Pacific Islands, such as Fiji, Tonga, and Vanuatu, to induce relaxation and health-beneficial effects. In this study, the antioxidant, anti-hyperuricemia, and antibacterial properties of kava root were investigated through the isolation and purification of bioactive compounds in ten fractions separated by column chromatography (CC). They included six flavonoids, 5-hydroxy-4',7-dimethoxyflavanone (C1), matteucinol (C2), isosakuranetin (C3), 5,7- dimethoxyflavanone (C4), 2',4'-dihydroxy-6'-methoxydihydrochalcone (in MC5) and alpinetin (C10), and seven kavalactones, 5,6-dehydrokawain (DK) (in MC5 and C6), kavain (in MC7), yangonin (in MC7 and C8), dihydro-5,6-dehydrokavain (DDK) (in MC9), 7,8-dihydromethysticin (in MC9), dihydromethysticin (in MC9), methysticin (in MC9). The chemical structures of the compounds were illustrated by the analyses of gas chromatography-mass spectrometry (GC-MS), electrospray ionization-mass spectrometry (ESI-MS), nuclear magnetic resonance (1H and 13C-NMR), and X-ray diffraction. The evaluation of the free radical scavenging activity of the isolated substances via the DPPH and ABTS assays revealed that C3 (IC50: ABTS = 76.5; DPPH = 74.8 µg/mL) possessed the strongest antioxidant property. In terms of anti-hyperuricemia activity evaluated via the xanthine oxidase inhibitory in vitro assay, the compound C10 was the most promising inhibitor, revealing an IC50 of 134.52 µg/mL. The two kavalactone mixtures in MC5 and a pure compound C6 inhibited the growth of bacteria Listeria monocytogenes, while MC7 can constrain the development of Klebsiella pneumoniae. This is the first study to isolate, purify, and identify the flavonoids isosakuranetin, 2',4'-dihydroxy-6'-methoxydihydrochalcone and alpinetin in kava root and report their pharmaceutical potential. The identified bioactive compounds showed potent antioxidant, anti-hyperuricemia, and antibacterial activity and thus can enhance the value of beverages and foods derived from kava root.

6.
Cancers (Basel) ; 14(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36230771

ABSTRACT

This is the first study clarifying the cytotoxic mechanism of momilactones A (MA) and B (MB) on acute promyelocytic leukemia (APL) HL-60 and multiple myeloma (MM) U266 cell lines. Via the MTT test, MB and the mixture MAB (1:1, w/w) exhibit a potent cytotoxicity on HL-60 (IC50 = 4.49 and 4.61 µM, respectively), which are close to the well-known drugs doxorubicin, all-trans retinoic acid (ATRA), and the mixture of ATRA and arsenic trioxide (ATRA/ATO) (1:1, w/w) (IC50 = 5.22, 3.99, and 3.67 µM, respectively). Meanwhile MB, MAB, and the standard suppressor doxorubicin substantially inhibit U266 (IC50 = 5.09, 5.59, and 0.24 µM, respectively). Notably, MB and MAB at 5 µM may promote HL-60 and U266 cell apoptosis by activating the phosphorylation of p-38 in the mitogen-activated protein kinase (MAPK) pathway and regulating the relevant proteins (BCL-2 and caspase-3) in the mitochondrial pathway. Besides, these compounds may induce G2 phase arrest in the HL-60 cell cycle through the activation of p-38 and disruption of CDK1 and cyclin B1 complex. Exceptionally, momilactones negligibly affect the non-cancerous cell line MeT-5A. This finding provides novel insights into the anticancer property of momilactones, which can be a premise for future studies and developments of momilactone-based anticancer medicines.

7.
Article in English | MEDLINE | ID: mdl-35886307

ABSTRACT

Municipal solid waste (MSW) management is one of the utmost challenges for Cambodia's city and district centers. The unsound management of MSW has detrimentally affected the environment and human health. In the present study, an attempt has been made to provide a comprehensive insight into the generation and characteristics, policies and legislation frameworks, management arrangement, collection, treatment, and disposal of MSW. The experience of developed and developing countries and the challenges and priorities of MSW management in Cambodia are also highlighted. In Cambodia, about 4.78 million tons of MSW were generated in 2020, with a 0.78 kg/capita/day generation rate. Only 86% of cities and districts have access to MSW collection services. The current practice of MSW management is reliance on landfill (44%). There are 164 landfills operating countrywide, receiving about 5749 tons of MSW per day. Recycling, incineration, and composting share 4%, 4%, and 2% of MSW generation, respectively. In 2021, the total revenue that was recovered from recyclables was USD 56M. The study concludes several major challenges and proposes valuable suggestions, which may be beneficial for the improvement of the current system to support the sustainable management of MSW in Cambodia.


Subject(s)
Refuse Disposal , Waste Management , Cambodia , Cities , Humans , Incineration , Solid Waste/analysis , Waste Disposal Facilities
8.
Evol Appl ; 15(7): 1141-1161, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35899250

ABSTRACT

Vietnam harnesses a rich diversity of rice landraces adapted to a range of conditions, which constitute a largely untapped source of diversity for the continuous improvement of cultivars. We previously identified a strong population structure in Vietnamese rice, which is captured in five Indica and four Japonica subpopulations, including an outlying Indica-5 group. Here, we leveraged that strong differentiation and 672 native rice genomes to identify genomic regions and genes putatively selected during the breeding of rice in Vietnam. We identified significant distorted patterns in allele frequency (XP-CLR) and population differentiation scores (F ST) resulting from differential selective pressures between native subpopulations, and later annotated them with QTLs previously identified by GWAS in the same panel. We particularly focussed on the outlying Indica-5 subpopulation because of its likely novelty and differential evolution, where we annotated 52 selected regions, which represented 8.1% of the rice genome. We annotated the 4576 genes in these regions and selected 65 candidate genes as promising breeding targets, several of which harboured alleles with nonsynonymous substitutions. Our results highlight genomic differences between traditional Vietnamese landraces, which are likely the product of adaption to multiple environmental conditions and regional culinary preferences in a very diverse country. We also verified the applicability of this genome scanning approach to identify potential regions harbouring novel loci and alleles to breed a new generation of sustainable and resilient rice.

9.
Molecules ; 27(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35408706

ABSTRACT

This is the first study to examine the effects of in vitro digestion on biological activities of Sargassum spp., a broadly known brown seaweed for therapeutic potential. Three fractions (F1-F3) were obtained from hexane extract by column chromatography. Under in vitro simulated digestion, the anti-α-amylase capacity of F1 in oral and intestinal phases increases, while it significantly decreases in the gastric phase. The α-amylase inhibition of F2 promotes throughout all digestive stages while the activity of F3 significantly reduces. The cytotoxic activity of F1 against U266 cell-line accelerates over the oral, gastric, and intestinal stages. The fractions F2 and F3 exhibited the declined cytotoxic potentialities in oral and gastric phases, but they were strengthened under intestinal condition. Palmitic acid and fucosterol may play an active role in antidiabetic and cytotoxic activity against multiple myeloma U266 cell line of Sargassum spp. However, the involvement of other phytochemicals in the seaweed should be further investigated.


Subject(s)
Sargassum , Seaweed , Digestion , Hypoglycemic Agents/pharmacology , Phytochemicals , Sargassum/chemistry , alpha-Amylases
10.
Molecules ; 27(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35164038

ABSTRACT

Essential oils (EOs) of Clausena indica fruits, Zanthoxylum rhetsa fruits, and Michelia tonkinensis seeds were analyzed for their phytochemical profiles and biological activities, including anti-diabetes, anti-gout, and anti-leukemia properties. Sixty-six volatile compounds were identified by gas chromatography-mass spectrometry (GC-MS), in which, myristicin (68.3%), limonene (44.2%), and linalool (49.3%) were the most prominent components of EOs extracted from C. indica, Z. rhetsa, and M. tonkinensis, respectively. In addition, only EOs from C. indica inhibited the activities of all tested enzymes comprising α-amylase (IC50 = 7.73 mg/mL), α-glucosidase (IC50 = 0.84 mg/mL), and xanthine oxidase (IC50 = 0.88 mg/mL), which are related to type 2 diabetes and gout. Remarkably, all EOs from C. indica, Z. rhetsa (IC50 = 0.73 mg/mL), and M. tonkinensis (IC50 = 1.46 mg/mL) showed a stronger anti-α-glucosidase ability than acarbose (IC50 = 2.69 mg/mL), a known anti-diabetic agent. Moreover, the growth of leukemia cell Meg-01 was significantly suppressed by all EOs, of which, the IC50 values were recorded as 0.32, 0.64, and 0.31 mg/mL for EOs from C. indica, Z. rhetsa, and M. tonkinensis, respectively. As it stands, this is the first report about the inhibitory effects of EOs from C. indica and Z. rhetsa fruits, and M. tonkinensis seeds on the human leukemia cell line Meg-01 and key enzymes linked to diabetes and gout. In conclusion, the present study suggests that EOs from these natural spices may be promising candidates for pharmaceutical industries to develop nature-based drugs to treat diabetes mellitus or gout, as well as malignant hematological diseases such as leukemia.


Subject(s)
Antineoplastic Agents/therapeutic use , Clausena/chemistry , Gout Suppressants/therapeutic use , Hypoglycemic Agents/therapeutic use , Leukemia/drug therapy , Magnoliaceae/chemistry , Oils, Volatile/therapeutic use , Zanthoxylum/chemistry , Humans , Oils, Volatile/chemistry
11.
Rice (N Y) ; 14(1): 52, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34110541

ABSTRACT

BACKGROUND: Vietnam possesses a vast diversity of rice landraces due to its geographical situation, latitudinal range, and a variety of ecosystems. This genetic diversity constitutes a highly valuable resource at a time when the highest rice production areas in the low-lying Mekong and Red River Deltas are enduring increasing threats from climate changes, particularly in rainfall and temperature patterns. RESULTS: We analysed 672 Vietnamese rice genomes, 616 newly sequenced, that encompass the range of rice varieties grown in the diverse ecosystems found throughout Vietnam. We described four Japonica and five Indica subpopulations within Vietnam likely adapted to the region of origin. We compared the population structure and genetic diversity of these Vietnamese rice genomes to the 3000 genomes of Asian cultivated rice. The named Indica-5 (I5) subpopulation was expanded in Vietnam and contained lowland Indica accessions, which had very low shared ancestry with accessions from any other subpopulation and were previously overlooked as admixtures. We scored phenotypic measurements for nineteen traits and identified 453 unique genotype-phenotype significant associations comprising twenty-one QTLs (quantitative trait loci). The strongest associations were observed for grain size traits, while weaker associations were observed for a range of characteristics, including panicle length, heading date and leaf width. CONCLUSIONS: We showed how the rice diversity within Vietnam relates to the wider Asian rice diversity by using a number of approaches to provide a clear picture of the novel diversity present within Vietnam, mainly around the Indica-5 subpopulation. Our results highlight differences in genome composition and trait associations among traditional Vietnamese rice accessions, which are likely the product of adaption to multiple environmental conditions and regional preferences in a very diverse country. Our results highlighted traits and their associated genomic regions that are a potential source of novel loci and alleles to breed a new generation of low input sustainable and climate resilient rice.

12.
Plants (Basel) ; 9(10)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053736

ABSTRACT

Anoectochilus roxburghii is a wild edible species and has been traditionally used for a wide range of diseases in many countries. Our research aims to find the optimal light-emitting diode (LED) lighting conditions to improve the growth and development of A. roxburghii seedling at the acclimation stage. Two-month-old explants were cultured under the various lighting conditions including red (R), blue (B), BR (one blue: four red), BRW151 (one blue: five red: one white), BRW142 (one blue: four red: two white), and fluorescent lamp (FL). The results showed that the lighting conditions not only affect the growth and morphology of plants but also the accumulation of total flavonoids. Single wavelengths (B or R LED) inhibited the growth and secondary biosynthesis of A. roxburghii, while the BR LED showed an enhancement in both growth and biomass accumulation. A. roxburghii plants were grown under BR LED light has average plant height (7.18 cm), stem diameter (17.6mm), number of leaves (5.78 leaves/tree), leaf area (4.67 cm2), fresh weight (0.459 g/tree), dry matter percentages (11.69%), and total flavonoid (1.811 mg/g FW) is considered to be superior to FL lamps and other LEDs in the experiment. This indicates that both blue and red wavelengths are required for the normal growth of A. roxburghii. To learn more about how light affects flavonoid biosynthesis, we evaluated the expression of genes involved in this process (pal, chs, chi, and fls) and found that BR LED light enhances the expression level of chi and fls genes compared to fluorescent lamps (1.18 and 1.21 times, respectively), leading to an increase in the flavonoid content of plant. Therefore, applying BR LED during in vitro propagation of A. roxburghii could be a feasible way to improve the medicinal value of this plant.

13.
Genes (Basel) ; 11(3)2020 03 06.
Article in English | MEDLINE | ID: mdl-32155750

ABSTRACT

Induced point mutations are important genetic resources for their ability to create hypo- and hypermorphic alleles that are useful for understanding gene functions and breeding. However, such mutant populations have only been developed for a few temperate maize varieties, mainly B73 and W22, yet no tropical maize inbred lines have been mutagenized and made available to the public to date. We developed a novel Ethyl Methanesulfonate (EMS) induced mutation resource in maize comprising 2050 independent M2 mutant families in the elite tropical maize inbred ML10. By phenotypic screening, we showed that this population is of comparable quality with other mutagenized populations in maize. To illustrate the usefulness of this population for gene discovery, we performed rapid mapping-by-sequencing to clone a fasciated-ear mutant and identify a causal promoter deletion in ZmCLE7 (CLE7). Our mapping procedure does not require crossing to an unrelated parent, thus is suitable for mapping subtle traits and ones affected by heterosis. This first EMS population in tropical maize is expected to be very useful for the maize research community. Also, the EMS mutagenesis and rapid mapping-by-sequencing pipeline described here illustrate the power of performing forward genetics in diverse maize germplasms of choice, which can lead to novel gene discovery due to divergent genetic backgrounds.


Subject(s)
Chromosomes, Plant/genetics , Mutation , Zea mays/genetics , Chromosome Mapping/methods , Edible Grain/genetics , Ethyl Methanesulfonate , Hybrid Vigor , Plant Breeding/methods , Plant Proteins/genetics , Promoter Regions, Genetic , Sequence Analysis, DNA/methods , Zea mays/growth & development
14.
Foods ; 8(12)2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31766429

ABSTRACT

We previously reported the inhibitory potentials of momilactones A (MA) and B (MB) against key enzymes related to type 2 diabetes and obesity. In this study, antioxidant and anti-skin-aging activities of MA and MB were investigated and compared with tricin, a well-known antioxidant and antiaging flavonoid in rice. MA, MB, and tricin were purified from rice husk by column chromatography and their biological activities were subsequently assayed by in vitro trials. The contents of MA, MB, and tricin of different commercial rice cultivars in Japan were quantified and confirmed by ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS) and high-performance liquid chromatography (HPLC) analyses. The antioxidant assays revealed a synergistic activity of the mixture MA and MB (MAB, 1:1, v/v). In addition, in 2,2'-azino-bis (ABTS) assay, IC50 values of MAB (0.3 mg/mL) and tricin (0.3 mg/mL) was 4-fold and 9-fold greater than that of individual MB (1.3 mg/mL) or MA (2.8 mg/mL), respectively. The in vitro enzymatic assays on pancreatic elastase and tyrosinase indicated that MA and MB were potential to relief skin wrinkles and freckles. In detail, MA exerted higher inhibition on both enzymatic activities (30.9 and 37.6% for elastase and tyrosinase inhibition, respectively) than MB (18.5 and 12.6%) and MAB (32.0 and 19.7%) at a concentration of 2.0 mg/mL. Notably, MA and the mixture MAB exhibited stronger inhibitions on elastase and tyrosinase in comparison with tricin and vanillin. MA, MB, and tricin in rice are potential to develop cosmetics as well as supplements for skin aging treatments.

15.
Molecules ; 24(16)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31405038

ABSTRACT

There is currently much interest in finding new phytochemicals among plants and fungi as nature-based alternatives to replace problematic herbicides such as glyphosate, which are preferentially used in agricultural production n. We discovered striking herbicidal potency in Cordyceps militaris (L.) and identified cordycepin as its principal plant growth inhibitor. Cordycepin obtained as an ethyl acetate extract was subjected to column chromatography and evaluated for its bioassay-guided phytotoxic capacity against Raphanus sativus (radish), showing a maximum inhibition on germination and growth of radish (IC50 = 0.052-0.078 mg/mL). Gas chromatography-mass spectrometry (GC-MS) (m/z: 251.2) and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) ([M + Na]+ m/z: 274.1; [M + H]+ m/z: 252.1) analyses confirmed cordycepin as the major component of the tested column fraction (55.38%). At 0.04 mg/mL, cordycepin showed 3.8-5.9- and 3.3-3.7-fold greater inhibition of the germination and growth of radish than benzoic acid (BA) and glyphosate, respectively. Compared with BA, isolated cordycepin reduced plant chlorophyll and carotenoid contents (2.0-9.5 -fold), while proline, total phenolic and total flavonoid contents were increased 1.2-1.8-fold. Finally, cordycepin promoted electrolyte leakage and malondialdehyde accumulation in radish aerial parts. Thus, cordycepin successfully isolated from Cordyceps militaris is a highly potent plant growth inhibitor with pending worldwide patent and may become a potential plant-based novel alternative to the disputed glyphosate.


Subject(s)
Cordyceps/chemistry , Deoxyadenosines , Herbicides , Raphanus/growth & development , Deoxyadenosines/chemistry , Deoxyadenosines/isolation & purification , Deoxyadenosines/pharmacology , Glycine/analogs & derivatives , Herbicides/chemistry , Herbicides/isolation & purification , Herbicides/pharmacology , Glyphosate
16.
Molecules ; 24(15)2019 Jul 27.
Article in English | MEDLINE | ID: mdl-31357670

ABSTRACT

Plants abound with active ingredients. Among these natural constituents, allelochemicals and signaling chemicals that are released into the environments play important roles in regulating the interactions between plants and other organisms. Allelochemicals participate in the defense of plants against microbial attack, herbivore predation, and/or competition with other plants, most notably in allelopathy, which affects the establishment of competing plants. Allelochemicals could be leads for new pesticide discovery efforts. Signaling chemicals are involved in plant neighbor detection or pest identification, and they induce the production and release of plant defensive metabolites. Through the signaling chemicals, plants can either detect or identify competitors, herbivores, or pathogens, and respond by increasing defensive metabolites levels, providing an advantage for their own growth. The plant-organism interactions that are mediated by allelochemicals and signaling chemicals take place both aboveground and belowground. In the case of aboveground interactions, mediated air-borne chemicals are well established. Belowground interactions, particularly in the context of soil-borne chemicals driving signaling interactions, are largely unknown, due to the complexity of plant-soil interactions. The lack of effective and reliable methods of identification and clarification their mode of actions is one of the greatest challenges with soil-borne allelochemicals and signaling chemicals. Recent developments in methodological strategies aim at the quality, quantity, and spatiotemporal dynamics of soil-borne chemicals. This review outlines recent research regarding plant-derived allelochemicals and signaling chemicals, as well as their roles in agricultural pest management. The effort represents a mechanistically exhaustive view of plant-organism interactions that are mediated by allelochemicals and signaling chemicals and provides more realistic insights into potential implications and applications in sustainable agriculture.


Subject(s)
Allelopathy , Pheromones/chemistry , Plant Physiological Phenomena , Plants/chemistry , Crops, Agricultural/chemistry , Herbivory , Pest Control , Pheromones/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Breeding
17.
Saudi Pharm J ; 27(5): 643-649, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31297018

ABSTRACT

This study was the first to detect the presence of the two compounds momilactone A (MA) and momilactone B (MB) in rice bran using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). By in vitro assays, both MA and MB exhibited potent inhibitory activities on pancreatic α-amylase and α-glucosidase which were significantly higher than γ-oryzanol, a well-known diabetes inhibitor. Remarkably, MA and MB indicated an effective inhibition on trypsin with the IC50 values of 921.55 and 884.03 µg/mL, respectively. By high-performance liquid chromatography (HPLC), quantities of MA (6.65 µg/g dry weight) and MB (6.24 µg/g dry weight) in rice bran were determined. Findings of this study revealed the α-amylase, α-glucosidase and trypsin inhibitors MA and MB contributed an active role to the diabetes inhibitory potential of rice bran.

18.
Molecules ; 24(5)2019 Mar 03.
Article in English | MEDLINE | ID: mdl-30832436

ABSTRACT

This paper reports the successive isolation and purification of bioactive compounds from the stem bark of Jatropha podagrica, a widely known medicinal plant. The ethyl acetate extract of the stem bark exhibited the strongest antioxidant activity assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, and ferric reducing antioxidant power (FRAP) assays (IC50 = 46.7, 66.0, and 492.6, respectively). By column chromatography (CC) with elution of hexane and ethyl acetate at 8:2, 7:3, and 6:4 ratios, the isolation of this active extract yielded five fractions (C1⁻C5). Chemical structures of the constituents included in C1⁻C5 were elucidated by gas chromatography-mass spectrometry (GC-MS), electrospray ionization-mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR) and resolved as methyl gallate (C1, C2, C3, C4), gallic acid (C1, C2), fraxetin (C2, C3, C4, C5), and tomentin (C3). Mixture C2 (IC50 DPPH and ABTS = 2.5 µg/mL) and C3 (IC50 FRAP = 381 µg/mL) showed the highest antioxidant properties. Among the isolated fractions, C4 was the most potential agent in growth inhibition of six bacterial strains including Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Bacillus subtilis, and Proteus mirabilis (MIC = 5, 20, 30, 20, 25, and 20 mg/mL, respectively). All identified constituents exerted an inhibitory activity on the growth of Lactuca sativa, of which the mixture C3 performed the maximal inhibition on shoot (IC50 = 49.4 µg/mL) and root (IC50 = 47.1 µg/mL) growth. Findings of this study suggest that gallic acid, methyl gallate, fraxetin, and tomentin isolated from J. podagrica possessed antioxidant, antibacterial, and growth inhibitory potentials.


Subject(s)
Antioxidants/chemistry , Jatropha/chemistry , Plant Extracts/chemistry , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Benzothiazoles/chemistry , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Cell Proliferation/drug effects , Coumarins/chemistry , Coumarins/pharmacology , Gallic Acid/analogs & derivatives , Gallic Acid/chemistry , Gallic Acid/pharmacology , Humans , Microbial Sensitivity Tests , Picrates/chemistry , Plant Bark/chemistry , Plant Stems/chemistry , Spectrometry, Mass, Electrospray Ionization , Staphylococcus aureus/pathogenicity , Sulfonic Acids/chemistry
19.
Molecules ; 24(3)2019 Jan 29.
Article in English | MEDLINE | ID: mdl-30700006

ABSTRACT

Momilactones A (MA) and B (MB) are the active phytoalexins and allelochemicals in rice. In this study, MA and MB were purified from rice husk of Oryza sativa cv. Koshihikari by column chromatography, and purification was confirmed by high-performance liquid chromatography, thin-layer chromatography, gas chromatography-mass spectrometry, liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and ¹H and 13C nuclear magnetic resonance analyses. By in vitro assays, both MA and MB exerted potent inhibition on α-amylase and α-glucosidase activities. The inhibitory effect of MB on these two key enzymes was greater than that of MA. Both MA and MB exerted greater α-glucosidase suppression as compared to that of the commercial diabetic inhibitor acarbose. Quantities of MA and MB in rice grain were 2.07 ± 0.01 and 1.06 ± 0.01 µg/dry weight (DW), respectively. This study was the first to confirm the presence of MA and MB in refined rice grain and reported the α-amylase and α-glucosidase inhibitory activity of the two compounds. The improved protocol of LC-ESI-MS in this research was simple and effective to detect and isolate MA and MB in rice organs.


Subject(s)
Diterpenes/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Lactones/pharmacology , Oryza/chemistry , alpha-Amylases/antagonists & inhibitors , Amylases/antagonists & inhibitors , alpha-Glucosidases/metabolism
20.
Molecules ; 24(3)2019 Feb 02.
Article in English | MEDLINE | ID: mdl-30717326

ABSTRACT

Although many investigations on phytochemicals in rice plant parts and root exudates have been conducted, information on the chemical profile of essential oil (EO) and potent biological activities has been limited. In this study, chemical compositions of rice leaf EO and in vitro biological activities were investigated. From 1.5 kg of fresh rice leaves, an amount of 20 mg EO was obtained by distillation and analyzed by gas chromatography-mass spectrometry (GC-MS), electrospray ionization (ESI), and atmospheric pressure chemical ionization (APCI) to reveal the presence of twelve volatile constituents, of which methyl ricinoleate (27.86%) was the principal compound, followed by palmitic acid (17.34%), and linolenic acid (11.16%), while 2-pentadecanone was the least (2.13%). Two phytoalexin momilactones A and B were first time identified in EO using ultra-performance liquid chromatography coupled with electrospray mass spectrometry (UPLC/ESI-MS) (9.80 and 4.93 ng/g fresh weight, respectively), which accounted for 7.35% and 3.70% of the EO, respectively. The assays of DPPH (IC50 = 73.1 µg/mL), ABTS (IC50 = 198.3 µg/mL), FRAP (IC50 = 700.8 µg/mL) and ß-carotene oxidation (LPI = 79%) revealed that EO possessed an excellent antioxidant activity. The xanthine oxidase assay indicated that the anti-hyperuricemia potential was in a moderate level (IC50 = 526 µg/mL) as compared with the standard allopurinol. The EO exerted potent inhibition on growth of Raphanus sativus, Lactuca sativa, and two noxious weeds Echinochloa crus-galli, and Bidens pilosa, but in contrast, the growth of rice seedlings was promoted. Among the examined plants, the growth of the E. crus-galli root was the most inhibited, proposing that constituents found in EO may have potential for the control of the problematic paddy weed E. crus-galli. It was found that the EO of rice leaves contained rich phytochemicals, which were potent in antioxidants and gout treatment, as well as weed management. Findings of this study highlighted the potential value of rice leaves, which may provide extra benefits for rice farmers.


Subject(s)
Antioxidants/chemistry , Oils, Volatile/chemistry , Oryza/chemistry , Phytochemicals/chemistry , Gas Chromatography-Mass Spectrometry , Lactuca/drug effects , Phytochemicals/pharmacology , Plant Leaves/chemistry , Plant Roots/chemistry , Raphanus/drug effects , Ricinoleic Acids/chemistry , Seedlings/drug effects , Spectrometry, Mass, Electrospray Ionization , Xanthine Oxidase/chemistry , alpha-Linolenic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...