Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(21)2023 10 25.
Article in English | MEDLINE | ID: mdl-37947602

ABSTRACT

Epithelial and stromal/mesenchymal limbal stem cells contribute to corneal homeostasis and cell renewal. Extracellular vesicles (EVs), including exosomes (Exos), can be paracrine mediators of intercellular communication. Previously, we described cargos and regulatory roles of limbal stromal cell (LSC)-derived Exos in non-diabetic (N) and diabetic (DM) limbal epithelial cells (LECs). Presently, we quantify the miRNA and proteome profiles of human LEC-derived Exos and their regulatory roles in N- and DM-LSC. We revealed some miRNA and protein differences in DM vs. N-LEC-derived Exos' cargos, including proteins involved in Exo biogenesis and packaging that may affect Exo production and ultimately cellular crosstalk and corneal function. Treatment by N-Exos, but not by DM-Exos, enhanced wound healing in cultured N-LSCs and increased proliferation rates in N and DM LSCs vs. corresponding untreated (control) cells. N-Exos-treated LSCs reduced the keratocyte markers ALDH3A1 and lumican and increased the MSC markers CD73, CD90, and CD105 vs. control LSCs. These being opposite to the changes quantified in wounded LSCs. Overall, N-LEC Exos have a more pronounced effect on LSC wound healing, proliferation, and stem cell marker expression than DM-LEC Exos. This suggests that regulatory miRNA and protein cargo differences in DM- vs. N-LEC-derived Exos could contribute to the disease state.


Subject(s)
Diabetes Mellitus , Exosomes , Limbus Corneae , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Limbus Corneae/metabolism , Cornea , Diabetes Mellitus/metabolism , Epithelial Cells/metabolism , Stromal Cells , Cell Communication
2.
Int J Mol Sci ; 24(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37761990

ABSTRACT

Recent studies have highlighted the therapeutic potential of small extracellular bodies derived from mesenchymal stem cells (MSC-sEVs) for various diseases, notably through their ability to alter T-cell differentiation and function. The current study aimed to explore immunomodulatory pathway alterations within T cells through mRNA sequencing of activated T cells cocultured with bone marrow-derived MSC-sEVs. mRNA profiling of activated human T cells cocultured with MSC-sEVs or vehicle control was performed using the QIAGEN Illumina sequencing platform. Pathway networks and biological functions of the differentially expressed genes were analyzed using Ingenuity pathway analysis (IPA)® software, KEGG pathway, GSEA and STRING database. A total of 364 differentially expressed genes were identified in sEV-treated T cells. Canonical pathway analysis highlighted the RhoA signaling pathway. Cellular development, movement, growth and proliferation, cell-to-cell interaction and inflammatory response-related gene expression were altered. KEGG enrichment pathway analysis underscored the apoptosis pathway. GSEA identified enrichment in downregulated genes associated with TNF alpha and interferon gamma response, and upregulated genes related to apoptosis and migration of lymphocytes and T-cell differentiation gene sets. Our findings provide valuable insights into the mechanisms by which MSC-sEVs implement immunomodulatory effects on activated T cells. These findings may contribute to the development of MSC-sEV-based therapies.


Subject(s)
Extracellular Vesicles , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/genetics , Interferon-gamma , T-Lymphocytes , Apoptosis/genetics
3.
Ocul Surf ; 25: 92-100, 2022 07.
Article in English | MEDLINE | ID: mdl-35690236

ABSTRACT

PURPOSE: MiR-146a upregulated in limbus vs. central cornea and in diabetic vs. non-diabetic limbus has emerged as an important immune and inflammatory signaling mediator in corneal epithelial wound healing. Our aim was to investigate the potential inflammation-related miR-146a target genes and their roles in normal and impaired diabetic corneal epithelial wound healing. METHODS: Our previous data from RNA-seq combined with quantitative proteomics of limbal epithelial cells (LECs) transfected with miR-146a mimic vs. mimic control were analyzed. Western blot and immunostaining were used to confirm the expression of miR-146a inflammatory target proteins in LECs and organ-cultured corneas. Luminex assay was performed on conditioned media at 6- and 20-h post-wounding in miR-146a mimic/inhibitor transfected normal and diabetic cultured LECs. RESULTS: Overexpression of miR-146a decreased the expression of pro-inflammatory TRAF6 and IRAK1 and downstream target NF-κB after challenge with lipopolysaccharide (LPS) or wounding. Additionally, miR-146a overexpression suppressed the production of downstream inflammatory mediators including secreted cytokines IL-1α, IL-1ß, IL-6 and IL-8, and chemokines CXCL1, CXCL2 and CXCL5. These cytokines and chemokines were upregulated in normal but not in diabetic LEC during wounding. Furthermore, we achieved normalized levels of altered secreted cytokines and chemokines in diabetic wounded LEC via specific inhibition of miR-146a. CONCLUSION: Our study documented significant impact of miR-146a on the expression of inflammatory mediators at the mRNA and protein levels during acute inflammatory responses and wound healing, providing insights into the regulatory role of miR-146a in corneal epithelial homeostasis in normal and diabetic conditions.


Subject(s)
Cornea , Diabetes Mellitus , MicroRNAs , Wound Healing , Cornea/metabolism , Cytokines/metabolism , Humans , Inflammation Mediators , MicroRNAs/genetics
4.
Front Immunol ; 9: 3053, 2018.
Article in English | MEDLINE | ID: mdl-30622539

ABSTRACT

Background: Bone marrow mesenchymal stem cells (bmMSC) may play a role in the regulation of maturation, proliferation, and functional activation of lymphocytes, though the exact mechanisms are unknown. MSC-derived exosomes induce a regulatory response in the function of B, T, and monocyte-derived dendritic cells. Here, we evaluated the specific inhibition of human lymphocytes by bmMSC-derived exosomes and the effects on B-cell function. Methods: Exosomes were isolated from culture media of bmMSC obtained from several healthy donors. The effect of purified bmMSC-derived exosomes on activated peripheral blood mononuclear cells (PBMCs) and isolated B and T lymphocyte proliferation was measured by carboxyfluorescein succinimidyl ester assay. Using the Illumina sequencing platform, mRNA profiling was performed on B-lymphocytes activated in the presence or absence of exosomes. Ingenuity® pathway analysis software was applied to analyze pathway networks, and biological functions of the differentially expressed genes. Validation by RT-PCR was performed. The effect of bmMSC-derived exosomes on antibody secretion was measured by ELISA. Results: Proliferation of activated PBMCs or isolated T and B cells co-cultured with MSC-derived exosomes decreased by 37, 23, and 18%, respectively, compared to controls. mRNA profiling of activated B-lymphocytes revealed 186 genes that were differentially expressed between exosome-treated and control cells. We observed down- and up-regulation of genes that are involved in cell trafficking, development, hemostasis, and immune cell function. RNA-Seq results were validated by real time PCR analysis for the expression of CXCL8 (IL8) and MZB1 genes that are known to have an important role in immune modulation. Functional alterations were confirmed by decreased IgM production levels. Consistent results were demonstrated among a wide variety of healthy human bmMSC donors. Conclusion: Our data show that exosomes may play an important role in immune regulation. They inhibit proliferation of several types of immune cells. In B-lymphocytes they modulate cell function by exerting differential expression of the mRNA of relevant genes. The results of this study help elucidate the mechanisms by which exosomes induce immune regulation and may contribute to the development of newer and safer therapeutic strategies.


Subject(s)
B-Lymphocytes/immunology , Exosomes/immunology , Lymphocyte Activation , Mesenchymal Stem Cells/cytology , RNA, Messenger/metabolism , Adult , B-Lymphocytes/metabolism , Cell Proliferation , Cells, Cultured , Coculture Techniques , Down-Regulation/immunology , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Primary Cell Culture , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Up-Regulation/immunology , Young Adult
5.
PLoS One ; 12(11): e0187722, 2017.
Article in English | MEDLINE | ID: mdl-29131834

ABSTRACT

Early detection of relapsed lymphoma improves response and survival. Current tools lack power for detection of early relapse, while being cumbersome and expensive. We searched for sensitive biomarkers that precede clinical relapse, and serve for further studies on therapy response and relapse. We recruited 20 healthy adults, 14 diffuse large B-cell lymphoma (DLBCL) patients and 11 Hodgkin lymphoma (HL) patients at diagnosis. Using small-RNA sequencing we identified in DLBCL patients increased plasma levels of miR-124 and miR-532-5p, and decreased levels of miR-425, miR-141, miR-145, miR-197, miR-345, miR-424, miR-128 and miR-122. In the HL group, we identified miR-25, miR-30a/d, miR-26b, miR-182, miR-186, miR-140* and miR-125a to be up-regulated, while miR-23a, miR-122, miR-93 and miR-144 were down-regulated. Pathway analysis of potential mRNAs targets of these miRNA revealed in the DLBCL group potential up-regulation of STAT3, IL8, p13k/AKT and TGF-B signaling, and potential down-regulation of the PTEN and p53 pathways; while in the HL group we have found the cAMP-mediated pathway and p53 pathway to be potentially down-regulated. Survival analyses revealed that plasma levels of miR-20a/b, miR-93 and miR-106a/b were associated with higher mortality. In conclusion, we identified sets of dysregulated circulating miRNA that might serve as reliable biomarkers for relapsed lymphoma.


Subject(s)
Hodgkin Disease/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , MicroRNAs/blood , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Case-Control Studies , Female , Hodgkin Disease/blood , Hodgkin Disease/pathology , Humans , Lymphoma, Large B-Cell, Diffuse/blood , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Middle Aged
6.
Eur J Nutr ; 52(4): 1405-15, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23015061

ABSTRACT

PURPOSE: Influenza viruses infect airway epithelial cells, causing respiratory distress. Immune defense is maintained by chemokine/cytokine secretions from airway epithelial cells. While moderate inflammatory response protects from ill effects, hyper-inflammatory response promotes the pathogenesis. High circulating levels of vitamin D are known to mitigate effects of infectious diseases, including respiratory infectious diseases. The question whether and how vitamin D treatment pre-/post-viral exposure modulates inflammatory response is not clear. The present study was undertaken to understand autophagy/apoptosis balance and chemokine/cytokine response to influenza A (H1N1) infection by pre- and post-1, 25-dihydroxyvitamin D3 (1,25[OH]2 D3)[calcitriol] treatment of human lung A549 epithelial cells. METHODS: Influenza A (H1N1) virus was propagated in A549 cell line, titrated using hemagglutination assay, and was used to assess effect of calcitriol. After confirming that 100 nM of calcitriol fails to clear virus, A549 cells were either pre-treated (16 h) with 100 nM or post-treated with 30 nM of 1,25[OH]2 D3 of virus inoculation (1 h). Cells after incubation at 37 °C under 5 % CO2 for 48 h were collected and subjected to RNA and protein extraction. Measurements of viability, influenza M protein, and molecular parameters of cell death and inflammatory response were performed. RESULTS: We report that treatment of these cells with 100/30 nM of 1,25[OH]2 D3 prior to/or post-H1N1 exposure does not affect viral clearance but significantly reduces autophagy and restores increased apoptosis seen on H1N1 infection back to its constitutive level. However, it significantly decreases the levels of H1N1-induced TNF-α (tumor necrosis factor-alpha), IFN-ß (interferon-beta), and IFN-stimulated gene-15 (ISG15). 1,25[OH]2 D3 treatment prior to/or post-H1N1 infection significantly down-regulates IL-8 as well as IL-6 RNA levels. These results demonstrate that calcitriol treatment suppresses the H1N1-induced transcription of the chemokines RANTES and IL-8 in epithelial cells. CONCLUSION: The findings provide support for the initiation of vitamin D supplementation program to VDD populations in reducing the severity of influenza.


Subject(s)
Alveolar Epithelial Cells/metabolism , Calcitriol/metabolism , Down-Regulation , Immunologic Factors/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/virology , Apoptosis , Autophagy , Blotting, Western , Cell Line , Cell Survival , Chemokines/genetics , Chemokines/metabolism , Culture Media, Conditioned/chemistry , Cytokines/genetics , Cytokines/metabolism , Hemagglutination Tests , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Kinetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Viral Matrix Proteins/metabolism
7.
Am J Physiol Lung Cell Mol Physiol ; 302(10): L1037-43, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22427529

ABSTRACT

Maternal hypothyroidism affects postnatal lung structure. High prevalence of hypothyroxinemia (low T4, normal T3) in iodine-deficient pregnant women and associated risk for neuropsychological development along with high infant/neonatal mortality ascribed to respiratory distress prompted us to study the effects of maternal hypothyroxinemia on postnatal lung development. Female Sprague Dawley rats were given a low-iodine diet (LID) with 1% KClO(4) in drinking water for 10 days, to minimize thyroid hormone differences. Half of these rats were continued on iodine-deficient diet; ID (LID with 0.005% KClO(4)) for 3 mo, whereas the rest were switched to an iodine-sufficient diet; IS [LID + potassium iodide (10 µg iodine/20 g of diet + normal drinking water)]. Pups born to ID mothers were compared with age-matched pups from IS mothers at postnatal days 8 (P8) and 16 (P16) (n = 6-8/group). ID pups had normal circulating T3 but significantly low T4 levels (P < 0.05) and concomitantly approximately sixfold higher thyroid hormone receptor-ß mRNA in alveolar epithelium. Lung histology revealed larger and irregularly shaped alveoli in ID pups relative to controls. Lung function was assessed at P16 using a double-chambered plethysmograph and observed reduced tidal volume, peak inspiratory and expiratory flow, and dynamic lung compliance in ID pups compared with IS pups. Significant lowering of surfactant protein (SP)-B and SP-C mRNA and protein found in ID pups at P16. ID pups had 16-fold lower matrix metalloproteinase-9 mRNA levels in their alveolar epithelium. In addition, mRNA levels of thyroid transcription factor-1 and SP-D were significantly higher (3-fold) compared with IS pups. At P16, significantly lower levels of SP-B and SP-C found in ID pups may be responsible for immature lung development and reduced lung compliance. Our data suggest that maternal hypothyroxinemia may result in the development of immature lungs that, through respiratory distress, could contribute to the observed high infant mortality in ID neonates.


Subject(s)
Hypothyroidism/metabolism , Iodine/deficiency , Lung/growth & development , Pregnancy Complications/metabolism , Respiratory Mucosa/metabolism , Thyroid Gland/metabolism , Thyroxine/deficiency , Animals , Female , Humans , Hypothyroidism/etiology , Hypothyroidism/physiopathology , Infant , Lung/pathology , Lung/physiopathology , Lung Compliance , Nuclear Proteins/biosynthesis , Peptides/metabolism , Plethysmography , Pregnancy , Pregnancy Complications/etiology , Pregnancy Complications/physiopathology , Pulmonary Alveoli/growth & development , Pulmonary Alveoli/pathology , Pulmonary Alveoli/physiopathology , Pulmonary Surfactant-Associated Protein B/biosynthesis , Pulmonary Surfactant-Associated Protein D/biosynthesis , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , Respiratory Mucosa/pathology , Thyroid Gland/physiopathology , Thyroid Hormone Receptors beta/biosynthesis , Thyroid Nuclear Factor 1 , Transcription Factors/biosynthesis
8.
Biochem Biophys Res Commun ; 397(3): 548-52, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20515651

ABSTRACT

Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1alpha, NRF-1alpha and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.


Subject(s)
Brain/growth & development , Gene Expression Regulation, Developmental , Genes, Mitochondrial , Hypothyroidism/genetics , Thyroid Hormones/metabolism , Animals , Brain/metabolism , Cerebellum/growth & development , Cerebellum/metabolism , Cyclooxygenase 1/genetics , Hypothyroidism/metabolism , NF-E2-Related Factor 1/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Prostaglandin-Endoperoxide Synthases/genetics , RNA-Binding Proteins/metabolism , Rats , Rats, Sprague-Dawley , Transcription Factors/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...