Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
J Exp Clin Cancer Res ; 42(1): 186, 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37507802

ABSTRACT

INTRODUCTION: The emergence of resistance to the highly successful BCL2-directed therapy is a major unmet need in acute myeloid leukemia (AML), an aggressive malignancy with poor survival rates. Towards identifying therapeutic options for AML patients who progress on BCL2-directed therapy, we studied a clinical-stage CDK7 inhibitor XL102, which is being evaluated in solid tumors (NCT04726332). MATERIALS AND METHODS: To determine the anti-proliferative effects of XL102, we performed experiments including time-resolved fluorescence resonance energy transfer, target occupancy, cell cycle and apoptosis-based assays. We also included genetically characterized primary myeloid blasts from de novo and relapsed/refractory AML patients. For mechanistic studies, CRISPR/Cas9 mediated knockout of CDK7 and c-Myc and immunoblotting were performed. NOD/SCID orthotropic and subcutaneous AML xenografts were used to determine anti-leukemic effects. To assess the synergistic effects of XL102 with Venetoclax, we performed RNA sequencing and gene set enrichment analysis using Venetoclax sensitive and resistant model systems. RESULTS: XL102, a highly specific, orally bioavailable covalent inhibitor of CDK7. Inhibitory effect on CDK7 by XL102 in primary myeloid blasts (n = 54) was in nanomolar range (mean = 300 nM; range = 4.0-952 nM). XL102 treated AML cells showed a reduction in phosphorylation levels of Serine 2/5/7 at carboxy-terminal domain of RNA polymerase II. T-loop phosphorylation of CDK1(Thr161) and CDK2(Thr160) was inhibited by XL102 in dose-dependent manner leading to cell-cycle arrest. c-Myc downregulation and enhanced levels of p53 and p21 in XL102 treated cells were observed. Increased levels of p21 and activation of p53 by XL102 were mimicked by genetic ablation of CDK7, which supports that the observed effects of XL102 are due to CDK7 inhibition. XL102 treated AML xenografts showed remarkable reduction in hCD45 + marrow cells (mean = 0.60%; range = 0.04%-3.53%) compared to vehicle control (mean = 38.2%; range = 10.1%-78%), with corresponding increase in p53, p21 and decrease in c-Myc levels. The data suggests XL102 induces apoptosis in AML cells via CDK7/c-Myc/p53 axis. RNA-sequencing from paired Venetoclax-sensitive and Venetoclax-resistant cells treated with XL102 showed downregulation of genes involved in proliferation and apoptosis. CONCLUSION: Taken together, XL102 with Venetoclax led to synergistic effects in overcoming resistance and provided a strong rationale for clinical evaluation of XL102 as a single agent and in combination with Venetoclax.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Cell Line, Tumor , Tumor Suppressor Protein p53 , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Apoptosis , Cyclin-Dependent Kinases/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
3.
Cancers (Basel) ; 15(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37190191

ABSTRACT

Osimertinib is a third-generation epidermal growth factor receptor and tyrosine kinase inhibitor (EGFR-TKI) approved for the treatment of lung adenocarcinoma patients harboring EGFR mutations. However, acquired resistance to this targeted therapy is inevitable, leading to disease relapse within a few years. Therefore, understanding the molecular mechanisms of osimertinib resistance and identifying novel targets to overcome such resistance are unmet needs of cancer patients. Here, we investigated the efficacy of two novel CDK12/13 inhibitors, AU-15506 and AU-16770, in osimertinib-resistant EGFR mutant lung adenocarcinoma cells in culture and xenograft models in vivo. We demonstrate that these drugs, either alone or in combination with osimertinib, are potent inhibitors of osimertinib-resistant as well as -sensitive lung adenocarcinoma cells in culture. Interestingly, only the CDK12/13 inhibitor in combination with osimertinib, although not as monotherapy, suppresses the growth of resistant tumors in xenograft models in vivo. Taken together, the results of this study suggest that inhibition of CDK12/13 in combination with osimertinib has the potential to overcome osimertinib resistance in EGFR mutant lung adenocarcinoma patients.

4.
J Cancer Res Clin Oncol ; 149(10): 7069-7078, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36871090

ABSTRACT

PURPOSE: Cholecystokinin is present in abundance in gallbladder tissue and mediates function through two structurally related receptors, CCK1R and CCK2R. Heterodimerization of these receptors is known to impact cell growth in vitro. However, the significance of these heterodimers in gallbladder carcinogenesis is relatively unknown. METHODS: Therefore, we evaluated the expression and the dimerization status of CCK1 and CCK2 receptors in human gallbladder carcinoma cell line (GBC-SD) and resected gallbladder tissue from normal (n = 10), cholelithiasis (n = 25) and gallbladder cancer (n = 25) by immunofluorescence/immunohistochemistry and western blot. The dimerization status of CCK1R and CCK2R was evaluated by co-immunoprecipitation. To understand the effect of heterodimerization of these receptors on growth-related signaling pathways, the expression of p-AKT, rictor, raptor and p-ERK was evaluated by western blot. RESULTS: We demonstrated the expression and heterodimerization of CCK1 and CCK2 receptor in GBC-SD gall bladder carcinoma cell line. Knockdown of CCK1R and CCK2R in the cell line led to significant reduction in p-AKT (P = 0.005; P = 0.0001) and rictor (P < 0.001; P < 0.001) levels. In tissue samples, significantly higher expression of CCK1R and CCK2R was observed in gallbladder cancer when compared to other groups both by immunohistochemistry (P = 0.008 and P = 0.013) and western blot (P = 0.009 and P = 0.003). An increase in heterodimer formation of CCK1R with CCK2R was observed in gallbladder cancer when compared to normal and cholelithiasis tissues. No significant difference in the expression of p-AKT and p-ERK was observed between the three groups. CONCLUSION: Our results provide the first evidence of heterodimerization of CCK1R and CCK2R in gallbladder tissue, and its association with development of gallbladder cancer. This finding has potential clinical and therapeutic significance.


Subject(s)
Carcinoma in Situ , Gallbladder Neoplasms , Humans , Receptor, Cholecystokinin B/genetics , Cholecystokinin/metabolism , Gallbladder Neoplasms/genetics , Proto-Oncogene Proteins c-akt/metabolism , Dimerization , Carcinogenesis/genetics
5.
Nature ; 601(7893): 434-439, 2022 01.
Article in English | MEDLINE | ID: mdl-34937944

ABSTRACT

The switch/sucrose non-fermentable (SWI/SNF) complex has a crucial role in chromatin remodelling1 and is altered in over 20% of cancers2,3. Here we developed a proteolysis-targeting chimera (PROTAC) degrader of the SWI/SNF ATPase subunits, SMARCA2 and SMARCA4, called AU-15330. Androgen receptor (AR)+ forkhead box A1 (FOXA1)+ prostate cancer cells are exquisitely sensitive to dual SMARCA2 and SMARCA4 degradation relative to normal and other cancer cell lines. SWI/SNF ATPase degradation rapidly compacts cis-regulatory elements bound by transcription factors that drive prostate cancer cell proliferation, namely AR, FOXA1, ERG and MYC, which dislodges them from chromatin, disables their core enhancer circuitry, and abolishes the downstream oncogenic gene programs. SWI/SNF ATPase degradation also disrupts super-enhancer and promoter looping interactions that wire supra-physiologic expression of the AR, FOXA1 and MYC oncogenes themselves. AU-15330 induces potent inhibition of tumour growth in xenograft models of prostate cancer and synergizes with the AR antagonist enzalutamide, even inducing disease remission in castration-resistant prostate cancer (CRPC) models without toxicity. Thus, impeding SWI/SNF-mediated enhancer accessibility represents a promising therapeutic approach for enhancer-addicted cancers.


Subject(s)
Adenosine Triphosphatases , DNA Helicases , Nuclear Proteins , Prostatic Neoplasms , Transcription Factors , Adenosine Triphosphatases/metabolism , Animals , Benzamides , DNA Helicases/genetics , Enhancer Elements, Genetic , Genes, myc , Hepatocyte Nuclear Factor 3-alpha , Humans , Male , Nitriles , Nuclear Proteins/genetics , Oncogenes , Phenylthiohydantoin , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Receptors, Androgen , Transcription Factors/genetics , Transcriptional Regulator ERG , Xenograft Model Antitumor Assays
6.
Environ Monit Assess ; 134(1-3): 271-8, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17333474

ABSTRACT

On-site sanitation is increasingly adopted in urban cities in India. The adoption of on-site sanitation system puts the groundwater resources in the vicinity of the system at a greater risk. Microbial contaminants as well as chemical contaminants like Chloride and Nitrate are generated from human waste. These contaminants travel through the medium and ultimately get in contact with the groundwater. Hence, the groundwater sources are vulnerable to nitrate contamination near the on-site sanitation systems. The present study indicates significant Nitrate and Chloride contamination in samples collected close to on-site sanitation systems. The recommended limit set by the Bureau of Indian standards (BIS) limit of 45 mg/l for Nitrate concentration is also exceeded in few samples. The study indicates that Bacterial as well as Nitrate contamination is more in Monsoon as compared to Summer.


Subject(s)
Enterobacteriaceae/isolation & purification , Nitrates/analysis , Waste Disposal, Fluid/methods , Water Pollutants/analysis , Water Supply/analysis , Chlorides/analysis , Colony Count, Microbial , Geological Phenomena , Geology , Humans , India , Metals, Heavy/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...