Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38067758

ABSTRACT

Traffic flow analysis is essential to develop smart urban mobility solutions. Although numerous tools have been proposed, they employ only a small number of parameters. To overcome this limitation, an edge computing solution is proposed based on nine traffic parameters, namely, vehicle count, direction, speed, and type, flow, peak hour factor, density, time headway, and distance headway. The proposed low-cost solution is easy to deploy and maintain. The sensor node is comprised of a Raspberry Pi 4, Pi camera, Intel Movidius Neural Compute Stick 2, Xiaomi MI Power Bank, and Zong 4G Bolt+. Pre-trained models from the OpenVINO Toolkit are employed for vehicle detection and classification, and a centroid tracking algorithm is used to estimate vehicle speed. The measured traffic parameters are transmitted to the ThingSpeak cloud platform via 4G. The proposed solution was field-tested for one week (7 h/day), with approximately 10,000 vehicles per day. The count, classification, and speed accuracies obtained were 79.8%, 93.2%, and 82.9%, respectively. The sensor node can operate for approximately 8 h with a 10,000 mAh power bank and the required data bandwidth is 1.5 MB/h. The proposed edge computing solution overcomes the limitations of existing traffic monitoring systems and can work in hostile environments.

2.
Sensors (Basel) ; 21(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34640821

ABSTRACT

The widespread development in wireless technologies and the advancements in multimedia communication have brought about a positive impact on the performance of wireless transceivers. We investigate the performance of our three-stage turbo detected system using state-of-the-art high efficiency video coding (HEVC), also known as the H.265 video standard. The system makes use of sphere packing (SP) modulation with the combinational gain technique of layered steered space-time code (LSSTC). The proposed three-stage system is simulated for the correlated Rayleigh fading channel and the bit-error rate (BER) curve obtained after simulation is free of any floor formation. The system employs low complexity source-bit coding (SBC) for protecting the H.265 coded stream. An intermediate recursive unity-rate code (URC) with an infinite impulse response is employed as an inner precoder. More specifically, the URC assists in the prevention of the BER floor by distributing the information across the decoders. There is an observable gain in the BER and peak signal-to-noise ratio (PSNR) performances with the increasing value of minimum Hamming distance (dH,min) using the three-stage system. Convergence analysis of the proposed system is investigated through an extrinsic information transfer (EXIT) chart. Our proposed system demonstrates better performance of about 22 dB than the benchmarker utilizing LSSTC-SP for iterative source-channel detection, but without exploiting the optimized SBC schemes.

SELECTION OF CITATIONS
SEARCH DETAIL
...