Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Biochemistry (Mosc) ; 84(6): 644-651, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31238864

ABSTRACT

An algorithm to extract kinetics of the ion radical bands from the strong absorption background in the transient absorption spectra of the Rhodobacter sphaeroides reaction centers upon femtosecond excitation of the primary electron donor is suggested. The rising kinetics of the transient absorption band at 1020 nm and the bleaching kinetics of the 545-nm band constructed using the proposed method are adequately fitted by the kinetic equations for sequential electron transfer from the excited primary donor to the BA (monomeric bacteriochlorophyll) molecule, and then to the HA (bacteriopheophytin serving as an electron acceptor) molecule with the rate constants of 3.5 ± 0.2 and 0.8 ± 0.1 ps, respectively. The kinetics of the bacteriochlorophyll absorption band at 600 nm shows both the ultrafast bleaching of the P870 dimer and slower bleaching of the BA monomer due to its transition to the anion radical. The plotted kinetics of the ion radical bands is in agreement with the concentration profiles of the charge-separated states produced by the global target analysis of experimental data using the model of sequential electron transfer in the reaction centers.


Subject(s)
Algorithms , Photosynthetic Reaction Center Complex Proteins/metabolism , Rhodobacter sphaeroides/chemistry , Kinetics
2.
Biochemistry (Mosc) ; 84(5): 520-528, 2019 May.
Article in English | MEDLINE | ID: mdl-31234766

ABSTRACT

In our recent X-ray study, we demonstrated that substitution of the natural leucine residue M196 with histidine in the reaction center (RC) from Rhodobacter (Rba.) sphaeroides leads to formation of a close contact between the genetically introduced histidine and the primary electron donor P (bacteriochlorophylls (BChls) PA and PB dimer) creating a novel pigment-protein interaction that is not observed in native RCs. In the present work, the possible nature of this novel interaction and its effects on the electronic properties of P and the photochemical charge separation in isolated mutant RCs L(M196)H are investigated at room temperature using steady-state absorption spectroscopy, light-induced difference FTIR spectroscopy, and femtosecond transient absorption spectroscopy. The results are compared with the data obtained for the RCs from Rba. sphaeroides pseudo-wild type strain. It is shown that the L(M196)H mutation results in a decrease in intensity and broadening of the long-wavelength Qy absorption band of P at ~865 nm. Due to the mutation, there is also weakening of the electronic coupling between BChls in the radical cation P+ and increase in the positive charge localization on the PA molecule. Despite the significant perturbations of the electronic structure of P, the mutant RCs retain high electron transfer rates and quantum yield of the P+QA- state (QA is the primary quinone acceptor), which is close to the one observed in the native RCs. Comparison of our results with the literature data suggests that the imidazole group of histidine M196 forms a π-hydrogen bond with the π-electron system of the PB molecule in the P dimer. It is likely that the specific (T-shaped) spatial organization of the π-hydrogen interaction and its potential heterogeneity in relation to the bonding energy is, at least partially, the reason that this type of interaction between the protein and the pigment and quinone cofactors is not realized in the native RCs.


Subject(s)
Bacterial Proteins/metabolism , Histidine/metabolism , Leucine/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Rhodobacter sphaeroides/metabolism , Bacterial Proteins/genetics , Crystallography, X-Ray , Electron Transport , Histidine/genetics , Kinetics , Leucine/genetics , Mutagenesis, Site-Directed , Photosynthetic Reaction Center Complex Proteins/genetics , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Spectroscopy, Fourier Transform Infrared
3.
Biochemistry (Mosc) ; 84(4): 370-379, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31228928

ABSTRACT

This review focuses on recent experimental data obtained by site-directed mutagenesis of the reaction center in purple nonsulfur bacteria. The role of axial ligation of (bacterio)chlorophylls in the regulation of spectral and redox properties of these pigments, as well as correlation between the structure of chromophores and nature of their ligands, are discussed. Cofactor ligation in various types of reaction centers is compared, and possible reasons for observed differences are examined in the light of modern ideas on the evolution of photosynthesis.


Subject(s)
Bacterial Proteins/metabolism , Bacteriochlorophylls/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Proteobacteria/metabolism , Bacterial Proteins/genetics , Bacteriochlorophylls/chemistry , Evolution, Molecular , Ligands , Mutagenesis, Site-Directed , Photosynthesis , Photosynthetic Reaction Center Complex Proteins/genetics , Rhodobacter sphaeroides/metabolism
4.
Biochemistry (Mosc) ; 82(6): 692-697, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28601078

ABSTRACT

In the absorption spectrum of Rhodobacter sphaeroides reaction centers, a minor absorption band was found with a maximum at 1053 nm. The amplitude of this band is ~10,000 times less and its half-width is comparable to that of the long-wavelength absorption band of the primary electron donor P870. When the primary electron donor is excited by femtosecond light pulses at 870 nm, the absorption band at 1053 nm is increased manifold during the earliest stages of charge separation. The growth of this absorption band in difference absorption spectra precedes the appearance of stimulated emission at 935 nm and the appearance of the absorption band of anion-radical BA- at 1020 nm, reported earlier by several researchers. When reaction centers are illuminated with 1064 nm light, the absorption spectrum undergoes changes indicating reduction of the primary electron acceptor QA, with the primary electron donor P870 remaining neutral. These photoinduced absorption changes reflect the formation of the long-lived radical state PBAHAQA-.


Subject(s)
Bacterial Proteins/metabolism , Cell Membrane/metabolism , Photosynthesis/physiology , Photosynthetic Reaction Center Complex Proteins/metabolism , Rhodobacter sphaeroides/metabolism , Electron Transport/physiology
5.
Biochemistry (Mosc) ; 78(1): 60-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23379560

ABSTRACT

Primary charge separation dynamics in four mutant reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides with increased midpoint potential of the primary electron donor P (M160LH, L131LH, M197FH, and M160LH + L131LH + M197FH) have been studied by femtosecond transient absorption spectroscopy at room temperature. The decay of the excited singlet state in the wild-type and mutant RCs is complex and has two main exponential components, which indicates heterogeneity of electron transfer rates or the presence of reverse electron transfer reactions. The radical anion band of monomeric bacteriochlorophyll B(A) at 1020 nm was first observed in transient absorbance difference spectra of single mutants. This band remains visible, although with somewhat reduced amplitude, even at delays up to tens of picoseconds when stimulated emission is absent and the reaction centers are in the P(+)H(A)(-) state. The presence of this band in this time period indicates the existence of thermodynamic equilibrium between the P(+)B(A)(-)H(A) and P(+)B(A)H(A)(-) states. The data give grounds for assuming that the value of the energy difference between the states P*, P(+)B(A)(-)H(A), and P(+)B(A)H(A)(-) at early times is of the same order of magnitude as the energy kT at room temperature. Besides, monomeric bacteriochlorophyll B(A) is found to be an immediate electron acceptor in the single mutant RCs, where electron transfer is hampered due to increased energy of the P(+)B(A)(-) state with respect to P*.


Subject(s)
Electrons , Mutation , Photosynthetic Reaction Center Complex Proteins/genetics , Photosynthetic Reaction Center Complex Proteins/metabolism , Rhodobacter sphaeroides , Electron Transport , Oxidation-Reduction , Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter sphaeroides/genetics , Rhodobacter sphaeroides/metabolism , Spectrophotometry, Ultraviolet , Temperature , Time Factors
6.
Biochim Biophys Acta ; 1817(8): 1407-17, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22365928

ABSTRACT

To explore the influence of the I(L177)H single mutation on the properties of the nearest bacteriochlorophylls (BChls), three reaction centers (RCs) bearing double mutations were constructed in the photosynthetic purple bacterium Rhodobacter sphaeroides, and their properties and pigment content were compared with those of the correspondent single mutant RCs. Each pair of the mutations comprised the amino acid substitution I(L177)H and another mutation altering histidine ligand of BChl P(A) or BChl B(B). Contrary to expectations, the double mutation I(L177)H+H(L173)L does not bring about a heterodimer RC but causes a 46nm blue shift of the long-wavelength P absorbance band. The histidine L177 or a water molecule were suggested as putative ligands for P(A) in the RC I(L177)H+H(L173)L although this would imply a reorientation of the His backbone and additional rearrangements in the primary donor environment or even a repositioning of the BChl dimer. The crystal structure of the mutant I(L177)H reaction center determined to a resolution of 2.9Å shows changes at the interface region between the BChl P(A) and the monomeric BChl B(B). Spectral and pigment analysis provided evidence for ß-coordination of the BChl B(B) in the double mutant RC I(L177)H+H(M182)L and for its hexacoordination in the mutant reaction center I(L177)H. Computer modeling suggests involvement of two water molecules in the ß-coordination of the BChl B(B). Possible structural consequences of the L177 mutation affecting the coordination of the two BChls P(A) and B(B) are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Subject(s)
Bacteriochlorophylls/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter sphaeroides/metabolism , Crystallography, X-Ray , Mutagenesis, Site-Directed , Potentiometry
7.
Biochim Biophys Acta ; 1817(8): 1392-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22209778

ABSTRACT

Primary charge separation dynamics in the reaction center (RC) of purple bacterium Rhodobacter sphaeroides and its P870 heterodimer mutants have been studied using femtosecond time-resolved spectroscopy with 20 and 40fs excitation at 870nm at 293K. Absorbance increase in the 1060-1130nm region that is presumably attributed to P(A)(δ+) cation radical molecule as a part of mixed state with a charge transfer character P*(P(A)(δ+)P(B)(δ-)) was found. This state appears at 120-180fs time delay in the wild type RC and even faster in H(L173)L and H(M202)L heterodimer mutants and precedes electron transfer (ET) to B(A) bacteriochlorophyll with absorption band at 1020nm in WT. The formation of the P(A)(δ+)B(A)(δ-) state is a result of the electron transfer from P*(P(A)(δ+)P(B)(δ-)) to the primary electron acceptor B(A) (still mixed with P*) with the apparent time delay of ~1.1ps. Next step of ET is accompanied by the 3-ps appearance of bacteriopheophytin a(-) (H(A)(-)) band at 960nm. The study of the wave packet formation upon 20-fs illumination has shown that the vibration energy of the wave packet promotes reversible overcoming of an energy barrier between two potential energy surfaces P* and P*(P(A)(δ+)B(A)(δ-)) at ~500fs. For longer excitation pulses (40fs) this promotion is absent and tunneling through an energy barrier takes about 3ps. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Subject(s)
Rhodobacter sphaeroides/chemistry , Mutation , Photosynthetic Reaction Center Complex Proteins/chemistry , Protein Multimerization
8.
Biochemistry (Mosc) ; 76(4): 450-4, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21585320

ABSTRACT

Histidine M182 in the reaction center (RC) of Rhodobacter sphaeroides serves as the fifth ligand of the bacteriochlorophyll (BChl) B(B) Mg atom. When this His is substituted by an amino acid that is not able to coordinate Mg, bacteriopheophytin appears in the B(B) binding site instead of BChl (Katilius, E., et al. (1999) J. Phys. Chem. B, 103, 7386-7389). We have shown that in the presence of the additional mutation I(L177)H the coordination of the BChl B(B) Mg atom in the double mutant I(L177)H+H(M182)L RC still remains. Changes in the double mutant RC absorption spectrum attributed to BChl absorption suggest that BChl B(B) Mg atom axial ligation might be realized not from the usual α-side of the BChl macrocycle, but from the opposite, ß-side. Weaker coordination of BChl B(B) Mg atom compared to the other mutant RC BChl molecules suggests that not an amino acid residue but a water molecule might be a possible ligand. The results are discussed in the light of the structural changes that occurred in the RC upon Ile/His substitution in the L177 position.


Subject(s)
Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter sphaeroides/chemistry , Amino Acid Substitution , Bacteriochlorophylls/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Pheophytins/chemistry , Photosynthetic Reaction Center Complex Proteins/genetics , Protein Conformation , Spectrophotometry
9.
FEBS Lett ; 584(19): 4193-6, 2010 Oct 08.
Article in English | MEDLINE | ID: mdl-20831870

ABSTRACT

The predicted Exigobacterium sibiricum bacterirhodopsin gene was amplified from an ancient Siberian permafrost sample. The protein bacteriorhodopsin from Exiguobacterium sibiricum (ESR) encoded by this gene was expressed in Escherichia coli membrane. ESR bound all-trans-retinal and displayed an absorbance maximum at 534nm without dark adaptation. The ESR photocycle is characterized by fast formation of an M intermediate and the presence of a significant amount of an O intermediate. Proteoliposomes with ESR incorporated transport protons in an outward direction leading to medium acidification. Proton uptake at the cytoplasmic surface of these organelles precedes proton release and coincides with M decay/O rise of the ESR.


Subject(s)
Bacillales/genetics , Bacillales/metabolism , Bacteriorhodopsins/genetics , Bacteriorhodopsins/metabolism , Proton Pumps/genetics , Proton Pumps/metabolism , Amino Acid Sequence , Arctic Regions , Bacillales/isolation & purification , Bacteriorhodopsins/chemistry , Base Sequence , Cloning, Molecular , DNA Primers/genetics , DNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Bacterial , Molecular Sequence Data , Proton Pumps/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Russia , Spectrophotometry
11.
Biochemistry (Mosc) ; 74(4): 452-60, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19463100

ABSTRACT

Mutant reaction centers (RC) from Rhodobacter sphaeroides have been studied in which histidine L153, the axial ligand of the central Mg atom of bacteriochlorophyll B(A) molecule, was substituted by cysteine, methionine, tyrosine, or leucine. None of the mutations resulted in conversion of the bacteriochlorophyll B(A) to a bacteriopheophytin molecule. Isolated H(L153)C and H(L153)M RCs demonstrated spectral properties similar to those of the wild-type RC, indicating the ability of cysteine and methionine to serve as stable axial ligands of the Mg atom of bacteriochlorophyll B(A). Because of instability of mutant H(L153)L and H(L153)Y RCs, their properties were studied without isolation of these complexes from the photosynthetic membranes. The most prominent effect of the mutations was observed with substitution of histidine by tyrosine. According to the spectral data and the results of pigment analysis, the B(A) molecule is missing in the H(L153)Y RC. Nevertheless, being associated with the photosynthetic membrane, this RC can accomplish photochemical charge separation with quantum yield of approximately 7% of that characteristic of the wild-type RC. Possible pathways of the primary electron transport in the H(L153)Y RC in absence of photochemically active chromophore are discussed.


Subject(s)
Amino Acid Substitution , Bacteriochlorophylls/metabolism , Histidine/genetics , Magnesium/metabolism , Mutation , Photosynthetic Reaction Center Complex Proteins/metabolism , Rhodobacter sphaeroides/metabolism , Bacteriochlorophylls/chemistry , Bacteriochlorophylls/genetics , Histidine/metabolism , Ligands , Molecular Conformation , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/genetics , Protein Binding , Rhodobacter sphaeroides/chemistry , Rhodobacter sphaeroides/genetics
13.
Biochemistry (Mosc) ; 70(11): 1256-61, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16336186

ABSTRACT

Using site-directed mutagenesis, we obtained the mutant of the purple bacterium Rhodobacter sphaeroides with Ile to His substitution at position 177 in the L-subunit of the photosynthetic reaction center (RC). The mutant strain forms stable and photochemically active RC complexes. Relative to the wild type RCs, the spectral and photochemical properties of the mutant RC differ significantly in the absorption regions corresponding to the primary donor P and the monomer bacteriochlorophyll (BChl) absorption. It is shown that the RC I(L177)H contains only three BChl molecules compared to four BChl molecules in the wild type RC. Considering the fact that the properties of both isolated and membrane-associated mutant RCs are similar, we conclude that the loss of a BChl molecule from the mutant RC is caused by the introduced mutation but not by the protein purification procedure. The new mutant missing one BChl molecule but still able to perform light-induced reactions forming the charge-separated state P+QA- appears to be an interesting object to study the mechanisms of the first steps of the primary electron transfer in photosynthesis.


Subject(s)
Histidine/metabolism , Isoleucine/metabolism , Pigments, Biological/metabolism , Rhodobacter sphaeroides/metabolism , Amino Acid Substitution
15.
Biochemistry (Mosc) ; 67(3): 364-71, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11970736

ABSTRACT

A new pathway of photoinactivation of photosystem II (PS II) connected with irreversible photoaccumulation of reduced pheophytin (Ph) in isolated D1-D2-cytochrome b559 complexes of reaction center (RC) of PS II was discovered. The inhibitory effects of white light illumination on photochemical activity of D1-D2-cytochrome b559 complexes of RCs of photosystem II, isolated from pea chloroplasts, have been compared under anaerobic conditions in the absence and in the presence of sodium dithionite, electron transfer from which to the oxidized primary electron donor P680+ results in the photoaccumulation of anion-radical of the primary electron acceptor, Ph(-.). In both cases, prolonged illumination (1-5 min, 120 W/m(2)) led to a pronounced loss of the photochemical activity as it was monitored by measuring the amplitude of the reversible photoinduced absorbance changes at 682 nm related to the photoreduction of Ph. The extent of the photoinactivation depended on the illumination time and pH of the medium. At pH 8.0, the presence of dithionite during photoinactivation brought about a protective effect compared to that in a control sample. In contrast, lowering pH to 6.0 increased the sensitivity to photoinactivation in the dithionite-containing samples. For 5 min irradiation, the photochemical activity in the absence and in the presence of dithionite decreased by 35 and 72%, respectively (this was accompanied by an irreversible bleaching of the pheophytin Q(x) absorption band at 542 nm). Degradation of the D1 and D2 proteins was not observed under these conditions. A subsequent addition of an electron acceptor, potassium ferricyanide, to the illuminated samples restored neither the amplitude of the signal at 682 nm nor absorption at 542 nm. It is suggested that at pH. 7.0 the photoaccumulated Ph(-.) is irreversibly converted into a secondary, most probably protonated form, that does not lead to destruction of the RCs but prevents the photoformation of the primary radical pair [P680+Ph(-.)]. A possible application of this effect to photoinactivation of PS II in vivo is discussed.


Subject(s)
Cytochrome b Group/metabolism , Dithionite/metabolism , Pheophytins/metabolism , Photosynthetic Reaction Center Complex Proteins/radiation effects , Photosystem II Protein Complex , Chloroplasts/chemistry , Cytochrome b Group/chemistry , Light , Light-Harvesting Protein Complexes , Macromolecular Substances , Oxidation-Reduction , Pisum sativum/chemistry , Photochemistry , Photosynthesis , Photosynthetic Reaction Center Complex Proteins/metabolism
16.
Photosynth Res ; 64(2-3): 189-98, 2000.
Article in English | MEDLINE | ID: mdl-16228457

ABSTRACT

Pheophytin a (Pheo) in Photosystem II reaction centres was exchanged for 13(1)-deoxo-13(1)-hydroxy-pheophytin a (13(1)-OH-Pheo). The absorption bands of 13(1)-OH-Pheo are blue-shifted and well separated from those of Pheo. Two kinds of modified reaction centre preparations can be obtained by applying the exchange procedure once (RC(1x)) or twice (RC(2x)). HPLC analysis and Pheo Q(X) absorption at 543 nm show that in RC(1x) about 50% of Pheo is replaced and in RC(2x) about 75%. Otherwise, the pigment and protein composition are not modified. Fluorescence emission and excitation spectra show quantitative excitation transfer from the new pigment to the emitting chlorophylls. Photoaccumulation of Pheo(-) is unmodified in RC(1x) and decreased only in RC(2x), suggesting that the first exchange replaces the inactive and the second the active Pheo. Comparing the effects of the first and the second replacement on the absorption spectrum at 6 K did not reveal substantial spectral differences between the active and inactive Pheo. In both cases, the absorption changes in the Q(Y) region can be interpreted as a combination of a blue shift of a transition at 684 nm, a partial decoupling of chlorophylls absorbing at 680 nm and a disappearance of Pheo absorption in the 676-680 nm region. No absorption decrease is observed at 670 nm for RC(1x) or RC(2x), showing that neither of the two reaction centre pheophytins contributes substantially to the absorption at this wavelength.

17.
FEBS Lett ; 450(1-2): 163-7, 1999 Apr 30.
Article in English | MEDLINE | ID: mdl-10350078

ABSTRACT

Isolated reaction centers of photosystem II with an altered pigment content were obtained by chemical exchange of the native pheophytin a molecules with externally added 13(1)-deoxo-13(1)-hydroxy-pheophytin a. Judged from a comparison of the absorption spectra and photochemical activities of exchanged and control reaction centers, 70-80% of the pheophytin molecules active in charge separation are replaced by 13(1)-deoxo-13(1)-hydroxy-pheophytin a after double application of the exchange procedure. The new molecule at the active branch was not active photochemically. This appears to be the first stable preparation in which a redox active chromophore of the reaction center of photosystem II was modified by chemical substitution. The data are compatible with the presence of an active and inactive branch of cofactors, as in bacterial reaction centers. Possible applications of the 13(1)-deoxo-13(1)-hydroxy-pheophytin a-exchanged preparation to the spectral and functional analysis of native reaction centers of photosystem II are discussed.


Subject(s)
Chenopodiaceae/chemistry , Pheophytins/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Borohydrides/chemistry , Light , Light-Harvesting Protein Complexes , Oxidation-Reduction , Photochemistry , Photosystem II Protein Complex , Plant Proteins/chemistry , Spectrophotometry
18.
FEBS Lett ; 420(2-3): 171-4, 1997 Dec 29.
Article in English | MEDLINE | ID: mdl-9459304

ABSTRACT

The D1-D2-cytochrome b-559 reaction center complex of photosystem II with an altered pigment composition was prepared from the original complex by treatment with sodium borohydride (BH4-). The absorption spectra of the modified and original complexes were compared to each other and to the spectra of purified chlorophyll a and pheophytin a (Pheo a) treated with BH4- in methanolic solution. The results of these comparisons are consistent with the presence in the modified complex of an irreversibly reduced Pheo a molecule, most likely 13(1)-deoxo-13(1)-hydroxy-Pheo a, replacing one of the two native Pheo a molecules present in the original complex. Similar to the original preparation, the modified complex was capable of a steady-state photoaccumulation of Pheo- and P680+. It is concluded that the pheophytin a molecule which undergoes borohydride reduction is not involved in the primary charge separation and seems to represent a previously postulated photochemically inactive Pheo a molecule. The Qy and Qx transitions of this molecule were determined to be located at 5 degrees C at 679.5-680 nm and 542 nm, respectively.


Subject(s)
Chenopodiaceae/metabolism , Cytochrome b Group/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Borohydrides/metabolism , Chlorophyll/chemistry , Chlorophyll/metabolism , Chlorophyll A , Dithionite/pharmacology , Light , Light-Harvesting Protein Complexes , Paraquat/metabolism , Pheophytins/chemistry , Pheophytins/metabolism , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/isolation & purification , Photosystem II Protein Complex , Plant Proteins/chemistry , Plant Proteins/metabolism , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...