Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Biochem Pharmacol ; 177: 113980, 2020 07.
Article in English | MEDLINE | ID: mdl-32305437

ABSTRACT

Human Cathepsin A (CatA) is a lysosomal serine carboxypeptidase of the renin-angiotensin system (RAS) and is structurally similar to acetylcholinesterase (AChE). CatA can remove the C-terminal amino acids of endothelin I, angiotensin I, Substance P, oxytocin, and bradykinin, and can deamidate neurokinin A. Proteomic studies identified CatA and its homologue, SCPEP1, as potential targets of organophosphates (OP). CatA could be stably inhibited by low µM to high nM concentrations of racemic sarin (GB), soman (GD), cyclosarin (GF), VX, and VR within minutes to hours at pH 7. Cyclosarin was the most potent with a kinetically measured dissociation constant (KI) of 2 µM followed by VR (KI = 2.8 µM). Bimolecular rate constants for inhibition by cyclosarin and VR were 1.3 × 103 M-1sec-1 and 1.2 × 103 M-1sec-1, respectively, and were approximately 3-orders of magnitude lower than those of human AChE indicating slower reactivity. Notably, both AChE and CatA bound diisopropylfluorophosphate (DFP) comparably and had KIDFP = 13 µM and 11 µM, respectively. At low pH, greater than 85% of the enzyme spontaneously reactivated after OP inhibition, conditions under which OP-adducts of cholinesterases irreversibly age. At pH 6.5 CatA remained stably inhibited by GB and GF and <10% of the enzyme spontaneously reactivated after 200 h. A crystal structure of DFP-inhibited CatA was determined and contained an aged adduct. Similar to AChE, CatA appears to have a "backdoor" for product release. CatA has not been shown previously to age. These results may have implications for: OP-associated inflammation; cardiovascular effects; and the dysregulation of RAS enzymes by OP.


Subject(s)
Cathepsin A/antagonists & inhibitors , Organophosphorus Compounds/chemistry , Organothiophosphorus Compounds/chemistry , Sarin/chemistry , Soman/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Binding Sites , Cathepsin A/chemistry , Cathepsin A/genetics , Cathepsin A/metabolism , Cell Line , Chemical Warfare Agents/chemistry , Chemical Warfare Agents/toxicity , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/toxicity , Crystallography, X-Ray , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Expression , HEK293 Cells , Humans , Isoflurophate/chemistry , Isoflurophate/pharmacology , Kinetics , Models, Molecular , Organophosphorus Compounds/toxicity , Organothiophosphorus Compounds/toxicity , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sarin/toxicity , Soman/toxicity , Substrate Specificity , Time Factors
2.
Biochemistry ; 58(52): 5351-5365, 2019 12 31.
Article in English | MEDLINE | ID: mdl-31192586

ABSTRACT

Cathepsin A (CatA, EC 3.4.16.5, UniProtKB P10619 ) is a human lysosomal carboxypeptidase. Counterintuitively, crystal structures of CatA and its homologues show a cluster of Glu and Asp residues binding the C-terminal carboxylic acid of the product or inhibitor. Each of these enzymes functions in an acidic environment and contains a highly conserved pair of Glu residues with side chain carboxyl group oxygens that are approximately 2.3-2.6 Šapart. In small molecules, carboxyl groups separated by ∼3 Šcan overcome the repulsive interaction by protonation of one of the two groups. The pKa of one group increases (pKa ∼ 11) and can be as much as ∼6 pH units higher than the paired group. Consequently, at low and neutral pH, one carboxylate can carry a net negative charge while the other can remain protonated and neutral. In CatA, E69 and E149 form a Glu pair that is important to catalysis as evidenced by the 56-fold decrease in kcat/Km in the E69Q/E149Q variant. Here, we have measured the pH dependencies of log(kcat), log(Km), and log(kcat/Km) for wild type CatA and its variants and have compared the measured pKa with calculated values. We propose a substrate-assisted mechanism in which the high pKa of E149 (>8.5) favors the binding of the carboxylate form of the substrate and promotes the abstraction of the proton from H429 of the catalytic triad effectively decreasing its pKa in a low-pH environment. We also identify a similar motif consisting of a pair of histidines in S-formylglutathione hydrolase.


Subject(s)
Carboxylic Acids/metabolism , Cathepsin A/chemistry , Cathepsin A/metabolism , Amino Acid Sequence , Biocatalysis , Cathepsin A/genetics , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Substrate Specificity
3.
Front Immunol ; 8: 910, 2017.
Article in English | MEDLINE | ID: mdl-28855898

ABSTRACT

Recent advances in the next-generation sequencing of B-cell receptors (BCRs) enable the characterization of humoral responses at a repertoire-wide scale and provide the capability for identifying unique features of immune repertoires in response to disease, vaccination, or infection. Immunosequencing now readily generates 103-105 sequences per sample; however, statistical analysis of these repertoires is challenging because of the high genetic diversity of BCRs and the elaborate clonal relationships among them. To date, most immunosequencing analyses have focused on reporting qualitative trends in immunoglobulin (Ig) properties, such as usage or somatic hypermutation (SHM) percentage of the Ig heavy chain variable (IGHV) gene segment family, and on reducing complex Ig property distributions to simple summary statistics. However, because Ig properties are typically not normally distributed, any approach that fails to assess the distribution as a whole may be inadequate in (1) properly assessing the statistical significance of repertoire differences, (2) identifying how two repertoires differ, and (3) determining appropriate confidence intervals for assessing the size of the differences and their potential biological relevance. To address these issues, we have developed a technique that uses Wilcox' robust statistics toolbox to identify statistically significant vaccine-specific differences between Ig repertoire properties. The advantage of this technique is that it can determine not only whether but also where the distributions differ, even when the Ig repertoire properties are non-normally distributed. We used this technique to characterize murine germinal center (GC) B-cell repertoires in response to a complex Ebola virus-like particle (eVLP) vaccine candidate with known protective efficacy. The eVLP-mediated GC B-cell responses were highly diverse, consisting of thousands of clonotypes. Despite this staggering diversity, we identified statistically significant differences between non-immunized, vaccine only, and vaccine-plus-adjuvant groups in terms of Ig properties, including IGHV-family usage, SHM percentage, and characteristics of the BCR complementarity-determining region. Most notably, our analyses identified a robust eVLP-specific feature-enhanced IGHV8-family usage in B-cell repertoires. These findings demonstrate the utility of our technique in identifying statistically significant BCR repertoire differences following vaccination. More generally, our approach is potentially applicable to a wide range of studies in infection, vaccination, auto-immunity, and cancer.

4.
PLoS Negl Trop Dis ; 11(2): e0005395, 2017 02.
Article in English | MEDLINE | ID: mdl-28222130

ABSTRACT

BACKGROUND: A majority infections caused by dengue virus (DENV) are asymptomatic, but a higher incidence of severe illness, such as dengue hemorrhagic fever, is associated with secondary infections, suggesting that pre-existing immunity plays a central role in dengue pathogenesis. Primary infections are typically associated with a largely serotype-specific antibody response, while secondary infections show a shift to a broadly cross-reactive antibody response. METHODS/PRINCIPAL FINDINGS: We hypothesized that the basis for the shift in serotype-specificity between primary and secondary infections can be found in a change in the antibody fine-specificity. To investigate the link between epitope- and serotype-specificity, we assembled the Dengue Virus Antibody Database, an online repository containing over 400 DENV-specific mAbs, each annotated with information on 1) its origin, including the immunogen, host immune history, and selection methods, 2) binding/neutralization data against all four DENV serotypes, and 3) epitope mapping at the domain or residue level to the DENV E protein. We combined epitope mapping and activity information to determine a residue-level index of epitope propensity and cross-reactivity and generated detailed composite epitope maps of primary and secondary antibody responses. We found differing patterns of epitope-specificity between primary and secondary infections, where secondary responses target a distinct subset of epitopes found in the primary response. We found that secondary infections were marked with an enhanced response to cross-reactive epitopes, such as the fusion-loop and E-dimer region, as well as increased cross-reactivity in what are typically more serotype-specific epitope regions, such as the domain I-II interface and domain III. CONCLUSIONS/SIGNIFICANCE: Our results support the theory that pre-existing cross-reactive memory B cells form the basis for the secondary antibody response, resulting in a broadening of the response in terms of cross-reactivity, and a focusing of the response to a subset of epitopes, including some, such as the fusion-loop region, that are implicated in poor neutralization and antibody-dependent enhancement of infection.


Subject(s)
Antibodies, Viral/immunology , Cross Reactions , Dengue Virus/immunology , Epitope Mapping , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Databases, Factual , Dengue Virus/classification , Immunologic Memory , Protein Binding , Serogroup
5.
Front Immunol ; 7: 681, 2016.
Article in English | MEDLINE | ID: mdl-28144239

ABSTRACT

The somatic diversity of antigen-recognizing B-cell receptors (BCRs) arises from Variable (V), Diversity (D), and Joining (J) (VDJ) recombination and somatic hypermutation (SHM) during B-cell development and affinity maturation. The VDJ junction of the BCR heavy chain forms the highly variable complementarity determining region 3 (CDR3), which plays a critical role in antigen specificity and binding affinity. Tracking the selection and mutation of the CDR3 can be useful in characterizing humoral responses to infection and vaccination. Although tens to hundreds of thousands of unique BCR genes within an expressed B-cell repertoire can now be resolved with high-throughput sequencing, tracking SHMs is still challenging because existing annotation methods are often limited by poor annotation coverage, inconsistent SHM identification across the VDJ junction, or lack of B-cell lineage data. Here, we present B-cell repertoire inductive lineage and immunosequence annotator (BRILIA), an algorithm that leverages repertoire-wide sequencing data to globally improve the VDJ annotation coverage, lineage tree assembly, and SHM identification. On benchmark tests against simulated human and mouse BCR repertoires, BRILIA correctly annotated germline and clonally expanded sequences with 94 and 70% accuracy, respectively, and it has a 90% SHM-positive prediction rate in the CDR3 of heavily mutated sequences; these are substantial improvements over existing methods. We used BRILIA to process BCR sequences obtained from splenic germinal center B cells extracted from C57BL/6 mice. BRILIA returned robust B-cell lineage trees and yielded SHM patterns that are consistent across the VDJ junction and agree with known biological mechanisms of SHM. By contrast, existing BCR annotation tools, which do not account for repertoire-wide clonal relationships, systematically underestimated both the size of clonally related B-cell clusters and yielded inconsistent SHM frequencies. We demonstrate BRILIA's utility in B-cell repertoire studies related to VDJ gene usage, mechanisms for adenosine mutations, and SHM hot spot motifs. Furthermore, we show that the complete gene usage annotation and SHM identification across the entire CDR3 are essential for studying the B-cell affinity maturation process through immunosequencing methods.

6.
Biochemistry ; 53(44): 6954-67, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25334088

ABSTRACT

The CapD enzyme of Bacillus anthracis is a γ-glutamyl transpeptidase from the N-terminal nucleophile hydrolase superfamily that covalently anchors the poly-γ-D-glutamic acid (pDGA) capsule to the peptidoglycan. The capsule hinders phagocytosis of B. anthracis by host cells and is essential for virulence. The role CapD plays in capsule anchoring and remodeling makes the enzyme a promising target for anthrax medical countermeasures. Although the structure of CapD is known, and a covalent inhibitor, capsidin, has been identified, the mechanisms of CapD catalysis and inhibition are poorly understood. Here, we used a computational approach to map out the reaction steps involved in CapD catalysis and inhibition. We found that the rate-limiting step of either CapD catalysis or inhibition was a concerted asynchronous formation of the tetrahedral intermediate with a barrier of 22-23 kcal/mol. However, the mechanisms of these reactions differed for the two amides. The formation of the tetrahedral intermediate with pDGA was substrate-assisted with two proton transfers. In contrast, capsidin formed the tetrahedral intermediate in a conventional way with one proton transfer. Interestingly, capsidin coupled a conformational change in the catalytic residue of the tetrahedral intermediate to stretching of the scissile amide bond. Furthermore, capsidin took advantage of iminol-amide tautomerism of its diacetamide moiety to convert the tetrahedral intermediate to the acetylated CapD. As evidence of the promiscuous nature of CapD, the enzyme cleaved the amide bond of capsidin by attacking it on the opposite side compared to pDGA.


Subject(s)
Bacillus anthracis/enzymology , Bacterial Proteins/chemistry , gamma-Glutamyltransferase/chemistry , Acylation , Aminobenzoates/chemistry , Anti-Bacterial Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Biocatalysis , Enzyme Inhibitors/chemistry , Models, Molecular , Polyglutamic Acid/chemistry , Protein Binding , Quantum Theory , Sulfides/chemistry , Thermodynamics , gamma-Glutamyltransferase/antagonists & inhibitors
7.
J Chem Phys ; 139(16): 165104, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24182085

ABSTRACT

Here, we apply the harmonic Fourier beads (HFB) path optimization method to study chemical reactions involving covalent bond breaking and forming on quantum mechanical (QM) and hybrid QM∕molecular mechanical (QM∕MM) potential energy surfaces. To improve efficiency of the path optimization on such computationally demanding potentials, we combined HFB with conjugate gradient (CG) optimization. The combined CG-HFB method was used to study two biologically relevant reactions, namely, L- to D-alanine amino acid inversion and alcohol acylation by amides. The optimized paths revealed several unexpected reaction steps in the gas phase. For example, on the B3LYP∕6-31G(d,p) potential, we found that alanine inversion proceeded via previously unknown intermediates, 2-iminopropane-1,1-diol and 3-amino-3-methyloxiran-2-ol. The CG-HFB method accurately located transition states, aiding in the interpretation of complex reaction mechanisms. Thus, on the B3LYP∕6-31G(d,p) potential, the gas phase activation barriers for the inversion and acylation reactions were 50.5 and 39.9 kcal∕mol, respectively. These barriers determine the spontaneous loss of amino acid chirality and cleavage of peptide bonds in proteins. We conclude that the combined CG-HFB method further advances QM and QM∕MM studies of reaction mechanisms.


Subject(s)
Alanine/chemistry , Models, Chemical , Acylation , Peptides/chemistry , Protons , Quantum Theory , Stereoisomerism
8.
PLoS Comput Biol ; 8(8): e1002665, 2012.
Article in English | MEDLINE | ID: mdl-22956900

ABSTRACT

Quantitatively predicting changes in drug sensitivity associated with residue mutations is a major challenge in structural biology. By expanding the limits of free energy calculations, we successfully identified mutations in influenza neuraminidase (NA) that confer drug resistance to two antiviral drugs, zanamivir and oseltamivir. We augmented molecular dynamics (MD) with Hamiltonian Replica Exchange and calculated binding free energy changes for H274Y, N294S, and Y252H mutants. Based on experimental data, our calculations achieved high accuracy and precision compared with results from established computational methods. Analysis of 15 micros of aggregated MD trajectories provided insights into the molecular mechanisms underlying drug resistance that are at odds with current interpretations of the crystallographic data. Contrary to the notion that resistance is caused by mutant-induced changes in hydrophobicity of the binding pocket, our simulations showed that drug resistance mutations in NA led to subtle rearrangements in the protein structure and its dynamics that together alter the active-site electrostatic environment and modulate inhibitor binding. Importantly, different mutations confer resistance through different conformational changes, suggesting that a generalized mechanism for NA drug resistance is unlikely.


Subject(s)
Drug Resistance, Viral , Neuraminidase/metabolism , Orthomyxoviridae/drug effects , Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Models, Molecular , Molecular Dynamics Simulation , Orthomyxoviridae/enzymology , Oseltamivir/pharmacology , Thermodynamics , Zanamivir/pharmacology
9.
J Chem Theory Comput ; 7(9): 3001-3011, 2011 Sep 13.
Article in English | MEDLINE | ID: mdl-22046108

ABSTRACT

Reliable predictions of relative binding free energies are essential in drug discovery, where chemists modify promising compounds with the aim of increasing binding affinity. Conventional Thermodynamic Integration (TI) approaches can estimate corresponding changes in binding free energies, but suffer from inadequate sampling due to ruggedness of the molecular energy surfaces. Here, we present an improved TI strategy for computing relative binding free energies of congeneric ligands. This strategy employs a specific, unphysical single-reference (SR) state and Hamiltonian replica exchange (HREX) to locally enhance sampling. We then apply this strategy to compute relative binding free energies of twelve ligands in the L99A mutant of T4 Lysozyme. Besides the ligands, our approach enhances hindered rotations of the important V111, as well as V87 and L118 sidechains. Concurrently, we devise practical strategies to monitor and improve HREX-SRTI efficiency. Overall, the HREX-SRTI results agree well (R(2) = 0.76, RMSE = 0.3 kcal/mol) with available experimental data. When optimized for efficiency, the HREX-SRTI precision matches that of experimental measurements.

10.
J Chem Theory Comput ; 6(11): 3427-3441, 2010 Nov 09.
Article in English | MEDLINE | ID: mdl-21151738

ABSTRACT

This paper introduces an efficient single-topology variant of Thermodynamic Integration (TI) for computing relative transformation free energies in a series of molecules with respect to a single reference state. The presented TI variant that we refer to as Single-Reference TI (SR-TI) combines well-established molecular simulation methodologies into a practical computational tool. Augmented with Hamiltonian Replica Exchange (HREX), the SR-TI variant can deliver enhanced sampling in select degrees of freedom. The utility of the SR-TI variant is demonstrated in calculations of relative solvation free energies for a series of benzene derivatives with increasing complexity. Noteworthy, the SR-TI variant with the HREX option provides converged results in a challenging case of an amide molecule with a high (13-15 kcal/mol) barrier for internal cis/trans interconversion using simulation times of only 1 to 4 ns.

11.
Biochemistry ; 48(48): 11532-45, 2009 Dec 08.
Article in English | MEDLINE | ID: mdl-19886670

ABSTRACT

Protein kinases are key regulators of diverse signaling networks critical for growth and development. Protein kinase A (PKA) is an important kinase prototype that phosphorylates protein targets at Ser and Thr residues by converting ATP to ADP. Mg(2+) ions play a crucial role in regulating phosphoryl transfer and can limit overall enzyme turnover by affecting ADP release. However, the mechanism by which Mg(2+) participates in ADP release is poorly understood. Here we use a novel transition path ensemble technique, the harmonic Fourier beads method, to explore the atomic and energetic details of the Mg(2+)-dependent ADP binding and release. Our studies demonstrate that adenine-driven ADP binding to PKA creates three ion-binding sites at the ADP/PKA interface that are absent otherwise. Two of these sites bind the previously characterized Mg(2+) ions, whereas the third site binds a monovalent cation with high affinity. This third site can bind the P-3 residue of substrate proteins and may serve as a reporter of the active site occupation. Binding of Mg(2+) ions restricts mobility of the Gly-rich loop that closes over the active site. We find that simultaneous release of ADP with Mg(2+) ions from the active site is unfeasible. Thus, we conclude that Mg(2+) ions act as a linchpin and that at least one ion must be removed prior to pyrophosphate-driven ADP release. The results of the present study enhance understanding of Mg(2+)-dependent association of nucleotides with protein kinases.


Subject(s)
Adenosine Diphosphate/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Magnesium/metabolism , Adenosine Diphosphate/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Algorithms , Binding Sites , Cations, Divalent , Cyclic AMP-Dependent Protein Kinases/chemistry , Enzyme Activation , Glycine/chemistry , Glycine/metabolism , Kinetics , Magnesium/chemistry , Models, Molecular , Serine/chemistry , Serine/metabolism , Thermodynamics , Threonine/chemistry , Threonine/metabolism
12.
J Am Chem Soc ; 131(5): 1706-16, 2009 Feb 11.
Article in English | MEDLINE | ID: mdl-19146415

ABSTRACT

Understanding the mechanism of ion permeation across lipid bilayers is key to controlling osmotic pressure and developing new ways of delivering charged, drug-like molecules inside cells. Recent reports suggest ion-pairing as the mechanism to lower the free energy barrier for the ion permeation in disagreement with predictions from the simple electrostatic models. In this paper we quantify the effect of ion-pairing or charge quenching on the permeation of Na(+) and Cl(-) ions across DMPC lipid bilayer by computing the corresponding potentials of mean force (PMFs) using fully atomistic molecular dynamics simulations. We find that the free energy barrier to permeation reduces in the order Na(+)-Cl(-) ion-pair (27.6 kcal/mol) > Cl(-) (23.6 kcal/mol) > Na(+) (21.9 kcal/mol). Furthermore, with the help of these PMFs we derive the change in the binding free energy between the Na(+) and Cl(-) with respect to that in water as a function of the bilayer permeation depth. Despite the fact that the bilayer boosts the Na(+)-Cl(-) ion binding free energy by as high as 17.9 kcal/mol near its center, ion-pairing between such hydrophilic ions as Na(+) and Cl(-) does not assist their permeation. However, based on a simple thermodynamic cycle, we suggest that ion-pairing between ions of opposite charge and solvent philicity could enhance ion permeation. Comparison of the computed permeation barriers for Na(+) and Cl(-) ions with available experimental data supports this notion. This work establishes general computational methodology to address ion-pairing in fluid anisotropic media and details the ion permeation mechanism on atomic level.


Subject(s)
Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Sodium Chloride/chemistry , Anions/chemistry , Cations, Monovalent/chemistry , Computer Simulation , Fourier Analysis , Osmotic Pressure , Permeability , Thermodynamics , Water/chemistry
13.
J Chem Phys ; 128(4): 044106, 2008 Jan 28.
Article in English | MEDLINE | ID: mdl-18247929

ABSTRACT

We establish the accuracy of the novel generalized gradient-augmented harmonic Fourier beads (ggaHFB) method in computing free-energy profiles or potentials of mean force (PMFs) through comparison with two independent conventional techniques. In particular, we employ umbrella sampling with one dimensional weighted histogram analysis method (WHAM) and free molecular dynamics simulation of radial distribution functions to compute the PMF for the Na(+)-Cl(-) ion-pair separation to 16 A in 1.0M NaCl solution in water. The corresponding ggaHFB free-energy profile in six dimensional Cartesian space is in excellent agreement with the conventional benchmarks. We then explore changes in the PMF in response to lowering the NaCl concentration to physiological 0.3 and 0.1M, and dilute 0.0M concentrations. Finally, to expand the scope of the ggaHFB method, we formally develop the free-energy gradient approximation in arbitrary nonlinear coordinates. This formal development underscores the importance of the logarithmic Jacobian correction to reconstruct true PMFs from umbrella sampling simulations with either WHAM or ggaHFB techniques when nonlinear coordinate restraints are used with Cartesian propagators. The ability to employ nonlinear coordinates and high accuracy of the computed free-energy profiles further advocate the use of the ggaHFB method in studies of rare events in complex systems.


Subject(s)
Algorithms , Electrolytes/chemistry , Fourier Analysis , Solutions/chemistry , Chlorides/chemistry , Computer Simulation , Energy Transfer , Ions/chemistry , Molecular Conformation , Sodium/chemistry , Sodium Chloride/chemistry , Thermodynamics , Water/chemistry
14.
J Chem Theory Comput ; 4(9): 1541-1554, 2008 Sep 09.
Article in English | MEDLINE | ID: mdl-20357907

ABSTRACT

We explore a conformational transition of the TATTVGYG signature peptide of the KcsA ion selectivity filter and its GYG to AYA mutant from the conducting α-strand state into the nonconducting pII-like state using a novel technique for multidimensional optimization of transition path ensembles and free energy calculations. We find that the wild type peptide, unlike the mutant, intrinsically favors the conducting state due to G77 backbone propensities and additional hydrophobic interaction between the V76 and Y78 side chains in water. The molecular mechanical free energy profiles in explicit water are in very good agreement with the corresponding adiabatic energies from the Generalized Born Molecular Volume (GBMV) implicit solvent model. However comparisons of the energies to higher level B3LYP/6-31G(d) Density Functional Theory calculations with Polarizable Continuum Model (PCM) suggest that the nonconducting state might be more favorable than predicted by molecular mechanics simulations. By extrapolating the single peptide results to the tetrameric channel, we propose a novel hypothesis for the ion selectivity mechanism.

15.
J Chem Phys ; 127(12): 124901, 2007 Sep 28.
Article in English | MEDLINE | ID: mdl-17902931

ABSTRACT

We describe a generalization of the gradient-augmented harmonic Fourier beads method for finding minimum free-energy transition path ensembles and similarly minimum potential energy paths to allow positional restraints on the centers of mass of selected atoms. The generalized gradient-augmented harmonic Fourier beads (ggaHFB) method further extends the scope of the HFB methodology to studying molecule transport across various mobile phases such as lipid membranes. Furthermore, the new implementation improves the applicability of the HFB method to studies of ligand binding, protein folding, and enzyme catalysis as well as modeling equilibrium pulling experiments. Like its predecessor, the ggaHFB method provides accurate energy profiles along the specified paths and in certain simple cases avoids the need for path optimization. The utility of the ggaHFB method is demonstrated with an application to the water permeation through a single-wall (5,5) carbon nanotube with a diameter of 6.78 A and length of 16.0 A. We provide a simple rationale as to why water enters the hydrophobic nanotube and why it does so in pulses and in wire assembly.


Subject(s)
Computer Simulation , Thermodynamics , Carbon/chemistry , Gases , Hydrophobic and Hydrophilic Interactions , Models, Chemical , Models, Statistical , Molecular Conformation , Molecular Weight , Nanotubes, Carbon/chemistry , Surface Properties , Temperature , Water/chemistry
16.
Protein Sci ; 16(6): 1087-100, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17473015

ABSTRACT

We evaluate the pK(a) of dihydrofolate (H(2)F) at the N(5) position in three ternary complexes with Escherichia coli dihydrofolate reductase (ecDHFR), namely ecDHFR(NADP(+):H(2)F) in the closed form (1), and the Michaelis complexes ecDHFR(NADPH:H(2)F) in the closed (2) and occluded (3) forms, by performing free energy perturbation with molecular dynamics simulations (FEP/MD). Our simulations suggest that in the Michaelis complex the pK(a) is modulated by the Met20 loop fluctuations, providing the largest pK(a) shift in substates with a "tightly closed" loop conformation; in the "partially closed/open" substates, the pK(a) is similar to that in the occluded complex. Conducive to the protonation, tightly closing the Met20 loop enhances the interactions of the cofactor and the substrate with the Met20 side chain and aligns the nicotinamide ring of the cofactor coplanar with the pterin ring of the substrate. Overall, the present study favors the hypothesis that N(5) is protonated directly from solution and provides further insights into the mechanism of the substrate protonation.


Subject(s)
Escherichia coli Proteins/chemistry , Folic Acid/analogs & derivatives , Methionine/chemistry , Tetrahydrofolate Dehydrogenase/chemistry , Binding Sites , Computer Simulation , Crystallography, X-Ray , Escherichia coli Proteins/metabolism , Folic Acid/chemistry , Folic Acid/metabolism , Kinetics , Models, Molecular , Protein Binding , Protein Conformation , Tetrahydrofolate Dehydrogenase/metabolism
17.
J Chem Phys ; 125(17): 174108, 2006 Nov 07.
Article in English | MEDLINE | ID: mdl-17100430

ABSTRACT

We present a robust, distributable method for computing minimum free energy paths of large molecular systems with rugged energy landscapes. The method, which we call harmonic Fourier beads (HFB), exploits the Fourier representation of a path in an appropriate coordinate space and proceeds iteratively by evolving a discrete set of harmonically restrained path points-beads-to generate positions for the next path. The HFB method does not require explicit knowledge of the free energy to locate the path. To compute the free energy profile along the final path we employ an umbrella sampling method in two generalized dimensions. The proposed HFB method is anticipated to aid the study of rare events in biomolecular systems. Its utility is demonstrated with an application to conformational isomerization of the alanine dipeptide in gas phase.


Subject(s)
Alanine/chemistry , Algorithms , Computer Simulation , Dipeptides/chemistry , Isomerism , Molecular Conformation , Thermodynamics
18.
J Chem Phys ; 124(19): 194903, 2006 May 21.
Article in English | MEDLINE | ID: mdl-16729840

ABSTRACT

A variation of the line integral method of Elber with self-avoiding walk has been implemented using a state of the art nonlinear constrained optimization procedure. The new implementation appears to be robust in finding approximate reaction paths for small and large systems. Exact transition states and intermediates for the resulting paths can easily be pinpointed with subsequent application of the conjugate peak refinement method [S. Fischer and M. Karplus, Chem. Phys. Lett. 194, 252 (1992)] and unconstrained minimization, respectively. Unlike previous implementations utilizing a penalty function approach, the present implementation generates an exact solution of the underlying problem. Most importantly, this formulation does not require an initial guess for the path, which makes it particularly useful for studying complex molecular rearrangements. The method has been applied to conformational rearrangements of the alanine dipeptide in the gas phase and in water, and folding of the beta hairpin of protein G in water. In the latter case a procedure was developed to systematically sample the potential energy surface underlying folding and reconstruct folding pathways within the nearest-neighbor hopping approximation.


Subject(s)
Alanine/chemistry , Dipeptides/chemistry , Models, Chemical , Models, Molecular , Nerve Tissue Proteins/chemistry , Protein Folding , Gases , Nonlinear Dynamics , Phase Transition , Protein Conformation , Water/chemistry
19.
J Am Chem Soc ; 128(4): 1287-92, 2006 Feb 01.
Article in English | MEDLINE | ID: mdl-16433547

ABSTRACT

ONIOM calculations have provided novel insights into the mechanism of homolytic Co-C5' bond cleavage in the 5'-deoxyadenosylcobalamin cofactor catalyzed by methylmalonyl-CoA mutase. We have shown that it is a stepwise process in which conformational changes in the 5'-deoxyadenosine moiety precede the actual homolysis step. In the transition state structure for homolysis, the Co-C5' bond elongates by approximately 0.5 Angstroms from the value found in the substrate-bound reactant complex. The overall barrier to homolysis is approximately 10 kcal/mol, and the radical products are approximately 2.5 kcal/mol less stable than the initial ternary complex of enzyme, substrate, and cofactor. The movement of the deoxyadenosine moiety during the homolysis step positions the resulting 5'-deoxyadenosyl radical for the subsequent hydrogen atom transfer from the substrate, methylmalonyl-CoA.


Subject(s)
Cobamides/chemistry , Methylmalonyl-CoA Mutase/chemistry , Adenosine/chemistry , Adenosine/metabolism , Binding Sites , Cobamides/metabolism , Hydrogen Bonding , Methylmalonyl-CoA Mutase/metabolism , Models, Molecular , Protein Conformation , Thermodynamics
20.
Inorg Chem ; 44(2): 306-15, 2005 Jan 24.
Article in English | MEDLINE | ID: mdl-15651877

ABSTRACT

The acidity (pull) and the axial ligand (push) effects on the O-O bond cleavage in the [(Salen)Mn(III)(RCO(3))L] acylperoxo complexes, with model L = none, NH(3), and HCO(2)(-) (1), have been studied with B3LYP density functional calculations. The acidic conditions have been mimicked by explicit protonation of 1 to afford a variety of [(Salen)Mn(III)(RCO(3)H)L] (2) and [(SalenH)Mn(III)(RCO(3))L] (3) complexes in ground quintet states. The protonation assists the O-O bond heterolysis, thus primarily forming highly reactive Mn(V)(O) species, and consequently suppresses formation of the less reactive Mn(IV)(O) species through homolytic channel described earlier in 1 [Khavrutskii, I. V.; Rahim, R. R.; Musaev, D. G.; Morokuma, K. J. Phys. Chem. B 2004, 108, 3845-3854]. In addition to the qualitative change of the O-O bond cleavage mode, the protonation affects the rate of the O-O bond cleavage. Therefore, varying the acidity of the reaction media helps control the O-O bond cleavage mode and rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...