Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 19188, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36357473

ABSTRACT

Chirps are familiar in nature, have a built-in resistance to noise and interference, and are connected to a wide range of highly oscillatory processes. Detecting chirp oscillating patterns by traditional Fourier series is challenging because the chirp frequencies constantly change over time. Estimating such types of functions considering the partial sums of a Fourier series in Fourier analysis does not permit an approximate solution, which entails more Fourier coefficients required for signal reconstruction. The standard Fourier series, therefore, has a poor convergence rate and is an inadequate approximation. In this study, we use a parameterized orthonormal basis with an adjustable parameter to match the oscillating behavior of the chirp to approximate linear chirps using the partial sums of a generalized Fourier series known as fractional Fourier series, which gives the best approximation with only a small number of fractional Fourier coefficients. We used the fractional Fourier transform to compute the fractional Fourier coefficients at sample points. Additionally, we discover that the fractional parameter has the best value at which fractional Fourier coefficients of zero degrees have the most considerable magnitude, leading to the rapid decline of fractional Fourier coefficients of high degrees. Furthermore, fractional Fourier series approximation with optimal fractional parameters provides the minimum mean square error over the fractional Fourier parameter domain.

2.
Nanomaterials (Basel) ; 12(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36296879

ABSTRACT

In recent years, energy consumption has become an essential aspect in the manufacturing industry, and low heat transfer is one of the obstacles that affect the quality of the final product. This situation can be managed by suspending nanoparticles into ordinary heat transferring fluid (the base fluid). This newly prepared colloidal suspension has better heat transport capabilities. Keeping such usage of nanofluids in mind, this research was performed to better understand the heat transport characteristics during flow analysis saturated in porous media subject to Al2O3-SiO2/water hybrid nanofluids. This flow problem was generated by a stretching/shrinking surface. The surface of the sheet was under the influence of mass suction and second-order partial slip. The boundary layer flow was formulated in a system of partial differential equations by utilizing basic conservation laws in conjunction with the Tiwari and Das nanofluid model. Then, the appropriate form of the similarity transformation was adapted to transform the model into a system of ordinary differential equations. The built-in function, i.e., the bvp4c function in the MATLAB software, solved the reduced form of the boundary layer model. The novelty of this study lay in the predicting of two different exact and numerical solutions for both the flow and temperature fields. The computed results showed that the medium porosity as well as the nanoparticle volume fraction widened the existence range of the dual solutions. In addition, the investigational output exposed the fact that the temperature fields were significantly enhanced by the higher nanoparticle volume fraction. Moreover, the outcomes of this study showed a superb correlation with existing works. The present results can be utilized in various branches of science and engineering such as the polymer industry and in the treatment of different diseases.

3.
Bioengineering (Basel) ; 9(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36290555

ABSTRACT

This research is engaged to explore biological peristaltic transport under the action of an externally applied magnetic field passing through an asymmetric channel which is saturated with porous media. The set of governing partial differential equations for the present peristaltic flow are solved in the absence of a low Reynolds number and long wavelength assumptions. The governing equations are to be solved completely, so that inertial effects can be studied. The numerical simulations and results are obtained by the help of a finite element method based on quadratic six-noded triangular elements equipped with a Galerkin residual procedure. The inertial effects and effects of other pertinent parameters are discussed by plotting graphs based on a finite element (FEM) solution. Trapped bolus is discussed using the graphs of streamlines. The obtained results are also compared with the results given in the literature which are highly convergent. It is concluded that velocity and the number of boluses is enhanced by an increase in Hartmann number and porosity parameter K Increasing inertial forces increase the velocity of flow but increasing values of the porosity parameter lead to a decrease in the pressure gradient. The study elaborates that magnetic field and porosity are useful tools to control the velocity, pressure, and boluses in the peristaltic flow pattern.

4.
Nanomaterials (Basel) ; 12(3)2022 01 27.
Article in English | MEDLINE | ID: mdl-35159769

ABSTRACT

The melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM-metal foam assembly that can readily be implemented with a wide range of operating conditions. Both computational fluid dynamic (CFD) and experimental validations proved the good accuracy of the proposed model for further applications. The present research found that the average PV cell temperature can be reduced by about 12 °C with a corresponding improvement in PCM melting duration of 127%. The addition of the metal foam is more effective at low solar radiation, ambient temperatures far below the PCM solidus temperature, and high wind speeds in nonlinear extension. With increasing of tilt angle, the PCM melting duration is linearly decreased by an average value of (13.4-25.0)% when the metal foam convective heat transfer coefficient is changed in the range of (0.5-20) W/m2.K. The present research also shows that the PCM thickness has a positive linear effect on the PCM melting duration, however, modifying the metal foam configuration from 0.5 to 20 W/m2.K has an effect on the PCM melting duration in such a way that the average PCM melting duration is doubled. This confirms the effectiveness of the inclusion of metal foam in the PV/PCM system.

SELECTION OF CITATIONS
SEARCH DETAIL