Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 14: 1292033, 2023.
Article in English | MEDLINE | ID: mdl-38054039

ABSTRACT

The space radiation (IR) environment contains high charge and energy (HZE) nuclei emitted from galactic cosmic rays with the ability to overcome current shielding strategies, posing increased IR-induced cardiovascular disease risks for astronauts on prolonged space missions. Little is known about the effect of 5-ion simplified galactic cosmic ray simulation (simGCRsim) exposure on left ventricular (LV) function. Three-month-old, age-matched male Apolipoprotein E (ApoE) null mice were irradiated with 137Cs gamma (γ; 100, 200, and 400 cGy) and simGCRsim (50, 100, 150 cGy all at 500 MeV/nucleon (n)). LV function was assessed using transthoracic echocardiography at early/acute (14 and 28 days) and late/degenerative (365, 440, and 660 days) times post-irradiation. As early as 14 and 28-days post IR, LV systolic function was reduced in both IR groups across all doses. At 14 days post-IR, 150 cGy simGCRsim-IR mice had decreased diastolic wall strain (DWS), suggesting increased myocardial stiffness. This was also observed later in 100 cGy γ-IR mice at 28 days. At later stages, a significant decrease in LV systolic function was observed in the 400 cGy γ-IR mice. Otherwise, there was no difference in the LV systolic function or structure at the remaining time points across the IR groups. We evaluated the expression of genes involved in hemodynamic stress, cardiac remodeling, inflammation, and calcium handling in LVs harvested 28 days post-IR. At 28 days post-IR, there is increased expression of Bnp and Ncx in both IR groups at the lowest doses, suggesting impaired function contributes to hemodynamic stress and altered calcium handling. The expression of Gals3 and ß-Mhc were increased in simGCRsim and γ-IR mice respectively, suggesting there may be IR-specific cardiac remodeling. IR groups were modeled to calculate the Relative Biological Effectiveness (RBE) and Radiation Effects Ratio (RER). No lower threshold was determined using the observed dose-response curves. These findings do not exclude the possibility of the existence of a lower IR threshold or the presence of IR-induced cardiovascular disease (CVD) when combined with additional space travel stressors, e.g., microgravity.

2.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982525

ABSTRACT

The lifetime effects of space irradiation (IR) on left ventricular (LV) function are unknown. The cardiac effects induced by space-type IR, specifically 5-ion simplified galactic cosmic ray simulation (simGCRsim), are yet to be discovered. Three-month-old, age-matched, male C57BL/6J mice were irradiated with 137Cs gamma (γ; 100, 200 cGy) and simGCRsim (50 and 100 cGy). LV function was assessed via transthoracic echocardiography at 14 and 28 days (early), and at 365, 440, and 660 (late) days post IR. We measured the endothelial function marker brain natriuretic peptide in plasma at three late timepoints. We assessed the mRNA expression of the genes involved in cardiac remodeling, fibrosis, inflammation, and calcium handling in LVs harvested at 660 days post IR. All IR groups had impaired global LV systolic function at 14, 28, and 365 days. At 660 days, 50 cGy simGCRsim-IR mice exhibited preserved LV systolic function with altered LV size and mass. At this timepoint, the simGCRsim-IR mice had elevated levels of cardiac fibrosis, inflammation, and hypertrophy markers Tgfß1, Mcp1, Mmp9, and ßmhc, suggesting that space-type IR may induce the cardiac remodeling processes that are commonly associated with diastolic dysfunction. IR groups showing statistical significance were modeled to calculate the Relative Biological Effectiveness (RBE) and Radiation Effects Ratio (RER). The observed dose-response shape did not indicate a lower threshold at these IR doses. A single full-body IR at doses of 100-200 cGy for γ-IR, and 50-100 cGy for simGCRsim-IR decreases the global LV systolic function in WT mice as early as 14 and 28 days after exposure, and at 660 days post IR. Interestingly, there is an intermediate time point (365 days) where the impairment in LV function is observed. These findings do not exclude the possibility of increased acute or degenerative cardiovascular disease risks at lower doses of space-type IR, and/or when combined with other space travel-associated stressors such as microgravity.


Subject(s)
Cardiomyopathies , Radiation Exposure , Male , Mice , Animals , Mice, Inbred C57BL , Ventricular Remodeling , Travel , Ventricular Function, Left , Fibrosis , Inflammation
3.
Cells ; 10(2)2021 02 13.
Article in English | MEDLINE | ID: mdl-33668521

ABSTRACT

Compared to low doses of gamma irradiation (γ-IR), high-charge-and-energy (HZE) particle IR may have different biological response thresholds in cardiac tissue at lower doses, and these effects may be IR type and dose dependent. Three- to four-month-old female CB6F1/Hsd mice were exposed once to one of four different doses of the following types of radiation: γ-IR 137Cs (40-160 cGy, 0.662 MeV), 14Si-IR (4-32 cGy, 260 MeV/n), or 22Ti-IR (3-26 cGy, 1 GeV/n). At 16 months post-exposure, animals were sacrificed and hearts were harvested and archived as part of the NASA Space Radiation Tissue Sharing Forum. These heart tissue samples were used in our study for RNA isolation and microarray hybridization. Functional annotation of twofold up/down differentially expressed genes (DEGs) and bioinformatics analyses revealed the following: (i) there were no clear lower IR thresholds for HZE- or γ-IR; (ii) there were 12 common DEGs across all 3 IR types; (iii) these 12 overlapping genes predicted various degrees of cardiovascular, pulmonary, and metabolic diseases, cancer, and aging; and (iv) these 12 genes revealed an exclusive non-linear DEG pattern in 14Si- and 22Ti-IR-exposed hearts, whereas two-thirds of γ-IR-exposed hearts revealed a linear pattern of DEGs. Thus, our study may provide experimental evidence of excess relative risk (ERR) quantification of low/very low doses of full-body space-type IR-associated degenerative disease development.


Subject(s)
Cardiovascular Diseases/genetics , Gene Expression Regulation/radiation effects , Heart/radiation effects , Radiation, Ionizing , Animals , Cesium Radioisotopes , Dose-Response Relationship, Radiation , Female , Gene Expression Profiling , Mice , Regression Analysis , Reproducibility of Results , Signal Transduction/genetics , Signal Transduction/radiation effects , Silicon , Time Factors , Titanium
4.
J Invest Dermatol ; 118(1): 126-32, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11851885

ABSTRACT

Tyrosinase, the rate-limiting enzyme for melanin synthesis, is induced after ultraviolet irradiation as part of the tanning response, the major recognized photoprotective response of human skin. Other DNA-damaging agents and DNA fragments such as thymidine dinucleotides also induce tyrosinase gene expression. Moreover, like ultraviolet light they also activate p53. To determine whether p53 activation is required for this increased tyrosinase expression, we employed two experimental systems: (i) a human melanoma line (WM35) known to express wild-type p53 versus WM35 cells engineered to express a transcriptionally inactive dominant-negative p53 (WM35-p53DN) or the empty vector alone (WM35-pCMV7) and (ii) mice with wild-type p53 versus p53 knockout mice. In WM35-p53DN cells, the baseline p53 protein level was higher than in WM35 or WM35-pCMV7 cells, and tyrosinase transcripts were lower. After ultraviolet irradiation, in all cell lines the p53 protein level increased within the first 24 h, as expected; and at 24 h tyrosinase mRNA levels were decreased. Consistent with the literature, these data in combination suggest that increased p53 protein level downregulates tyrosinase mRNA. In WM35 and WM35-pCMV7 cells at 48 and 72 h, however, whereas p53 levels remained elevated, tyrosinase mRNA levels compared to pre-irradiation levels tripled, whereas in WM35-p53DN cells levels remained below baseline. In thymidine-dinucleotide-treated WM35 and WM35-pCMV7 cells there was a comparable upregulation of tyrosinase mRNA within 24 h that persisted through 72 h, but there was no upregulation of tyrosinase mRNA in WM35-p53DN cells any time after ultraviolet irradiation or thymidine dinucleotide treatment. In ear skin of p53 wild-type mice, topical application of thymidine dinucleotide induced a 4-5-fold increase in epidermal melanin content after 3 wk, but in p53 knockout mice thymidine dinucleotide application caused no detectable increase in melanin. Together, these data demonstrate that p53 activation increases tyrosinase mRNA level and subsequently pigmentation. The data further suggest that tanning is part of a p53-mediated adaptive response of mammalian skin to DNA damage from ultraviolet irradiation.


Subject(s)
Gene Expression Regulation/physiology , Monophenol Monooxygenase/genetics , Tumor Suppressor Protein p53/physiology , Animals , Humans , Melanins/biosynthesis , Melanoma/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout/genetics , RNA, Messenger/metabolism , Tumor Cells, Cultured/drug effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...