Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Hum Exp Toxicol ; 42: 9603271231215036, 2023.
Article in English | MEDLINE | ID: mdl-37984886

ABSTRACT

This study explores whether resveratrol effectively protects the reproductive system against isoflurane-induced toxicity in testicular tissue. In this experiment, we randomly divided 60 adult male C57BL/6 mice into six groups (n = 10). Five consecutive days per week, mice were exposed to 1.5% isoflurane for 1 h/day and were given 50 and 100 mg/kg resveratrol. After 35 days (the completion of the mouse spermatogenesis period), the left testis was removed for histomorphometric evaluations, while the right testis was used to determine the Capacity of total antioxidants and lipid peroxidation. To analyze the Parameters of sperm, chromatin maturation, and DNA fragmentation, the left caudal epididymis was used. Based on a one-way analysis of variance (ANOVA), we considered a difference in means of 0.05 to be significant (P0.05). Compared to the control group, the isoflurane group showed a significant decrease in testicular weight, volume, sperm parameters, and tissue histomorphometry. Comparatively, to the control group, malondialdehyde levels increased, and the total antioxidant capacity decreased significantly. Resveratrol improved all of the above parameters in the simultaneous treatment groups compared to the isoflurane group. It did not, however, reach the level of the control group in all cases. It has been demonstrated that resveratrol, with its powerful antioxidant properties, reduces the reproductive toxicity of isoflurane by inhibiting free radicals and increasing the testicular tissue's antioxidant capacity.


Subject(s)
Antioxidants , Isoflurane , Male , Mice , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Resveratrol/pharmacology , Isoflurane/metabolism , Lipid Peroxidation , Mice, Inbred C57BL , Semen/metabolism , Spermatozoa , Testis
2.
Iran J Med Sci ; 48(5): 501-509, 2023 09.
Article in English | MEDLINE | ID: mdl-37786462

ABSTRACT

Background: Autophagy is a conservative mechanism for cell survival as the main response of cells to stress conditions. The present study aimed to assess the effect of docetaxel on the survival, fertilization, and expression of autophagy-related genes in vitrified oocytes. Methods: The study was conducted in 2018 at the Stem Cells Technology Research Center, Shiraz University of Medical Sciences (Shiraz, Iran). Denuded oocytes were randomly selected and assigned to five groups, namely control (n=133), docetaxel (n=136), docetaxel+cryoprotectants (n=146), docetaxel+vitrification (n=138), and vitrification (n=145). The effect of vitrification on the expression of autophagy-related gene 5 (ATG5) and Beclin-1 was determined using a real-time polymerase chain reaction. Data were analyzed using SPSS software (version 26.0) and GraphPad Prism 9. Results: Survival and fertilization rates in each experimental group were significantly reduced compared to the control group (P=0.001). After in vitro fertilization of oocytes, the 2-cell formation rate was significantly reduced in the docetaxel+vitrification and vitrification groups compared to the control and docetaxel groups (P=0.001 and P=0.001, respectively). Pre-incubation of oocytes with docetaxel reduced gene expression levels of Beclin-1 and ATG5 in the docetaxel+cryoprotectants and docetaxel+vitrification groups (P=0.001 and P=0.019, respectively). The expression level of these genes was also reduced in the docetaxel group compared to the control group (P=0.001). Conclusion: Incubation of mouse metaphase II oocytes with docetaxel prior to vitrification reduced the expression of autophagy-related genes and increased survival and fertilization rates compared to untreated oocytes.


Subject(s)
Cryopreservation , Vitrification , Mice , Animals , Docetaxel/pharmacology , Docetaxel/therapeutic use , Metaphase , Beclin-1/genetics , Beclin-1/pharmacology , Oocytes/physiology , Cryoprotective Agents/pharmacology , Autophagy
3.
Biochem Biophys Res Commun ; 682: 281-292, 2023 11 19.
Article in English | MEDLINE | ID: mdl-37832385

ABSTRACT

Covering surgical wounds with biomaterials, biologic scaffolds, and mesenchymal stem cells (MSCs) improves the healing process and reduces postoperative complications. This study was designed to evaluate and compare the effect of MSC-free/MSC-seeded new collagen/poly(3-hydroxybutyrate) (COL/P3HB) composite scaffold and human amniotic membrane (HAM) on the colon anastomosis healing process. COL/P3HB scaffold was prepared using freeze-drying method. MSCs were isolated and characterized from rat adipose tissue. After biocompatibility evaluation by MTT assay, MSCs were seeded on the scaffold and HAM by micro-mass seeding technique. In total, 35 male rats were randomly divided into five groups. After the surgical procedure, cecum incisions were covered by the MSC-free/MSC-seeded scaffold or HAM. Incisions in the control group were only sutured. One month later, the healing process was determined by stereological analysis. The Kruskal-Wallis followed by Dunn's tests were utilized for statistical outcome analysis (SPSS software version 21). COL/10% P3HB scaffold showed the best mechanical and structural properties (7.86 MPa strength, porosity more than 75%). MTT assay indicated that scaffold and especially HAM have suitable biocompatibility. Collagenization and neovascularization were significantly higher, and necrosis was considerably lower in all treated groups in comparison with the controls. MSC-seeded scaffold and HAM significantly decrease inflammation and increase gland volume compared with other groups. The MSC-seeded HAM was significantly successful in decreasing edema compared with other groups. Newly synthesized COL/P3HB scaffold improves the colon anastomosis healing; however, the major positive effect belonged to HAM. MSCs remarkably increase their healing process. Further investigations may contribute to confirming these results in other wound healing.


Subject(s)
Mesenchymal Stem Cells , Tissue Scaffolds , Humans , Rats , Male , Animals , Tissue Scaffolds/chemistry , Amnion , Wound Healing , Collagen/chemistry , Anastomosis, Surgical , Colon/surgery
4.
Mult Scler Relat Disord ; 77: 104846, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37413855

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is one of the most prevalent chronic inflammatory diseases caused by demyelination and axonal damage in the central nervous system. Structural retinal imaging via optical coherence tomography (OCT) shows promise as a noninvasive biomarker for monitoring of MS. There are successful reports regarding the application of Artificial Intelligence (AI) in the analysis of cross-sectional OCTs in ophthalmologic diseases. However, the alteration of thicknesses of various retinal layers in MS is noticeably subtle compared to other ophthalmologic diseases. Therefore, raw cross-sectional OCTs are replaced with multilayer segmented OCTs for discrimination of MS and healthy controls (HCs). METHODS: To conform to the principles of trustworthy AI, interpretability is provided by visualizing the regional layer contribution to classification performance with the proposed occlusion sensitivity approach. The robustness of the classification is also guaranteed by showing the effectiveness of the algorithm while being tested on the new independent dataset. The most discriminative features from different topologies of the multilayer segmented OCTs are selected by the dimension reduction method. Support vector machine (SVM), random forest (RF), and artificial neural network (ANN) are used for classification. Patient-wise cross-validation (CV) is utilized to evaluate the performance of the algorithm, where the training and test folds contain records from different subjects. RESULTS: The most discriminative topology is determined to square with a size of 40 pixels and the most influential layers are the ganglion cell and inner plexiform layer (GCIPL) and inner nuclear layer (INL). Linear SVM resulted in 88% Accuracy (with standard deviation (std) = 0.49 in 10 times of execution to indicate the repeatability), 78% precision (std=1.48), and 63% recall (std=1.35) in the discrimination of MS and HCs using macular multilayer segmented OCTs. CONCLUSION: The proposed classification algorithm is expected to help neurologists in the early diagnosis of MS. This paper distinguishes itself from other studies by employing two distinct datasets, which enhances the robustness of its findings in comparison with previous studies with lack of external validation. This study aims to circumvent the utilization of deep learning methods due to the limited quantity of the available data and convincingly demonstrates that favorable outcomes can be achieved without relying on deep learning techniques.


Subject(s)
Multiple Sclerosis , Humans , Artificial Intelligence , Multiple Sclerosis/diagnostic imaging , Tomography, Optical Coherence , Early Diagnosis
5.
J Stroke Cerebrovasc Dis ; 32(8): 107202, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37354874

ABSTRACT

Although cell therapy has been applied in regenerative medicine for decades, recent years have seen greatly increased attention being given to the use of stem cell-based derivatives such as cell-free secretome. Dental pulp stem cells (DPSCs) are widely available, easily accessible, and have high neuroprotective and angiogenic properties. In addition, DPSC-derived secretome contains a rich mixture of trophic factors. The current investigation evaluated the short-term therapeutic effects of human DPSCs and their secretome in a rat model of mild ischemic stroke. Mild ischemic stroke was induced by 30 min middle cerebral artery occlusion, and hDPSCs or their secretome was administered intra-arterially and intranasally. Neurological function, infarct size, spatial working memory, and relative expression of seven target genes in two categories of neurotrophic and angiogenic factors were assessed three days after stroke. In the short-term, all treatments reduced the severity of neurological and histological deficits caused by ischemic stroke. Moreover, transient middle cerebral artery occlusion led to the striatal and cortical over-expression of BDNF, NT-3, and angiogenin, while NGF and VEGF expression was reduced. Almost all interventions were able to modulate the expression of target genes after stroke. The obtained data revealed that single intra-arterial administration of hDPSCs or their secretome, single intranasal transplantation of hDPSCs, or repeated intranasal administration of hDPSC-derived secretome was able to ameliorate the devastating effects of a mild stroke, at least in the short-term.


Subject(s)
Ischemic Stroke , Stroke , Rats , Humans , Animals , Infarction, Middle Cerebral Artery/therapy , Dental Pulp , Secretome , Stem Cells , Stroke/therapy
6.
Mar Drugs ; 21(5)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37233461

ABSTRACT

Sea cucumber extracts and their bioactive compounds have the potential for stem cell proliferation induction and for their beneficial therapeutic properties. In this study, human umbilical cord mesenchymal stromal/stem cells (hUC-MSCs) were exposed to an aqueous extract of Holothuria parva body walls. Proliferative molecules were detected using gas chromatography-mass spectrometry (GC-MS) analysis in an aqueous extract of H. parva. The aqueous extract concentrations of 5, 10, 20, 40, and 80 µg/mL and 10 and 20 ng/mL of human epidermal growth factor (EGF) as positive controls were treated on hUC-MSCs. MTT, cell count, viability, and cell cycle assays were performed. Using Western blot analysis, the effects of extracts of H. parva and EGF on cell proliferation markers were detected. Computational modeling was done to detect effective proliferative compounds in the aqueous extract of H. parva. A MTT assay showed that the 10, 20, and 40 µg/mL aqueous extract of H. parva had a proliferative effect on hUC-MSCs. The cell count, which was treated with a 20 µg/mL concentration, increased faster and higher than the control group (p < 0.05). This concentration of the extract did not have a significant effect on hUC-MSCs' viability. The cell cycle assay of hUC-MSCs showed that the percentage of cells in the G2 stage of the extract was biologically higher than the control group. Expression of cyclin D1, cyclin D3, cyclin E, HIF-1α, and TERT was increased compared with the control group. Moreover, expression of p21 and PCNA decreased after treating hUC-MSCs with the extract. However, CDC-2/cdk-1 and ERK1/2 had almost the same expression as the control group. The expression of CDK-4 and CDK-6 decreased after treatment. Between the detected compounds, 1-methyl-4-(1-methyl phenyl)-benzene showed better affinity to CDK-4 and p21 than tetradecanoic acid. The H. parva aqueous extract showed proliferative potential on hUC-MSCs.


Subject(s)
Holothuria , Sea Cucumbers , Animals , Humans , Epidermal Growth Factor/pharmacology , Cell Differentiation , Umbilical Cord , Stem Cells
7.
Reprod Sci ; 30(10): 2962-2972, 2023 10.
Article in English | MEDLINE | ID: mdl-37071259

ABSTRACT

Studies on adverse health consequences of azo dyes are limited and conflicting. Coenzyme Q10 (CoQ10) supplementation has been shown to have benefits associated with antioxidant and anti-inflammatory characteristics on several body systems. This work investigates the possible toxic effects of the widely used food additive sunset yellow and the probable protective effects of CoQ10 on testicular tight and gap junctions in rats by assessing molecular, immunohistochemical, and histopathological changes. Sixty Sprague-Dawley male weanling rats were randomly divided into six groups (n = 10). The rats received their treatments via daily oral gavages for 6 weeks. The treatments included as follows: low dose of sunset yellow (SY-LD) (2.5 mg/kg/day), high dose of sunset yellow (SY-HD) (70 mg/kg/day), CoQ10 (10 mg/kg/day), CoQ10 with low dose of sunset yellow (CoQ10 + LD), CoQ10 with high dose of sunset yellow (CoQ10 + HD), and distilled water as the control treatment. At the end of the experiment, the rats were anesthetized, and the testes were removed for molecular (real-time quantitative PCR), immunohistochemical, and histopathological (H & E staining) assessments. Claudin 11 and occludin gene expression significantly decreased in HD and CoQ10 + HD groups compared with the controls. Connexin 43 (Cx43) expression in the control and CoQ10 groups was significantly higher than in the HD group. The immunohistochemical and histopathological data were largely in line with these findings. The results showed that exposure to a high dose of sunset yellow led to disturbances in cell-to-cell interactions and testicular function. Simultaneous treatment with CoQ10 had some beneficial effects but did not completely improve these undesirable effects.


Subject(s)
Azo Compounds , Testis , Rats , Male , Animals , Rats, Sprague-Dawley , Azo Compounds/pharmacology , Gap Junctions
8.
BMC Cardiovasc Disord ; 22(1): 181, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35439928

ABSTRACT

BACKGROUND: The influence of cutting the sub-diaphragmatic branch of the vagus nerve on heart rate variability (HRV) and inflammatory reaction to severe hemorrhagic shock has not been determined prior to this study. METHODS: Male Sprague-Dawley rats were divided into four groups of Sham, sub-diaphragmatic vagotomized (Vag), subacute (135 ± 2 min) hemorrhagic shock (SHS), and sub-diaphragmatic vagotomized with SHS (Vag + SHS). Hemodynamic parameters were recorded and HRV calculated during multiple phases in a conscious model of hemorrhagic shock. The expressions of TNF-α and iNOS were measured in the spleen and lung tissues at the conclusion of the protocol. RESULTS: Decreases in blood pressure during blood withdrawal were identical in the SHS and Vag + SHS groups. However, heart rate only decreased in the Nadir-1 phase of the SHS group. HRV indicated increased power in the very-low, low, and high (VLF, LF, and HF) frequency bands during the Nadir-1 phase of the SHS and Vag + SHS groups, albeit the values were higher in the SHS group. In the recovery phase, the HF bands were only lower in the SHS group. After hemorrhagic shock followed by resuscitation, the expression of TNF-α and iNOS increased in the spleen and lung of the SHS group, and the expression of these genes was significantly lower in the Vag + SHS group than in the SHS group. CONCLUSION: Parasympathetic activity increases during the hypotensive phase of hemorrhagic shock, whereas the cardiac vagal tone decreases in the recovery phase. Sub-diapragmatic vagotomy blunts the cardiac vagal tone during hemorrhagic shock, but its effect is reversed in the recovery phase. The vagus nerve plays a role in proinflammatory responses in the lungs and spleen in subacute hemorrhagic shock followed by resuscitation.


Subject(s)
Pneumonia , Shock, Hemorrhagic , Animals , Disease Models, Animal , Female , Heart Rate/physiology , Humans , Male , Pneumonia/etiology , Pregnancy , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha , Vagotomy
9.
Neurosci Lett ; 773: 136511, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35143889

ABSTRACT

During the last 20 years, stem cell therapy has been considered as an effective approach for regenerative medicine. Due to poor ability of stem cells to survive following transplantation, it has been proposed that beneficial effects of stem cells mainly depend on paracrine function. Therefore, the present study was designed to reinforce mesenchymal stem cells (MSCs) to express higher levels of trophic factors especially the ones with the neurotrophic properties. Here, bone marrow (BM)-MSCs and adipose-MSCs were treated with conditioned medium (CM) of dental pulp stem cells (DPSCs) or hair follicle stem cells (HFSCs) for up to three days. The relative expression of five key trophic factors that have critical effects on the central nervous system regeneration were evaluated using qRT-PCR technique. Furthermore, to assess the impacts of conditioned mediums on the fate of MSCs, expression of seven neuronal/glial markers were evaluated 3 days after the treatments. The obtained data revealed priming of BM-MSCs with HFSC-CM or DPSC-CM increases the BDNF expression over time. Such effect was also observed in adipose-MSCs following DPSC-CM treatment. Secretome preconditioning remarkably increased NGF expression in the adipose-MSCs. In addition, although priming of adipose-MSCs with HFSC-CM increased GDNF expression one day after the treatment, DPSC-CM enhanced GDNF mRNA in BM-MSCs at a later time point. It seemed priming of BM-MSCs with HFSC-CM, promoted differentiation into the glial lineage. Our findings showed that MSCs preconditioning with secretome of neural crest-derived stem cells could be a promising approach to enhance the neurotrophic potential of these stem cells.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Cell Differentiation , Culture Media, Conditioned/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Neural Crest , Secretome , Stem Cells
10.
Cell Tissue Bank ; 23(1): 143-155, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33843009

ABSTRACT

Dental pulp derived-mesenchymal stem cells (DP-MSCs) is considered a suitable are candidate for tissue engineering techniques and osseous reconstruction. Based on the hypothesis that Hypericum perforatum, Elaeagnus Angustifolia and Psidium guajava extracts can be used in cell-based bone tissue engineering due to meagre cytotoxicity response in the cell culture medium, their effects on the viability and metabolic activity of DP-MSCs were investigated and compared with each extract. DP-MSCs were extracted from human dental pulp, characterized by flow cytometry, and differentiated into Osteogenic and adipogenic lineages which were then cultured in different concentrations of E. Angustifolia, H. perforatum and P. guajava extracts at different time intervals followed by MTT assay evaluation. The dental pulp mesenchymal stem cells were evaluated for their plastic adherence ability, fibroblast-like and spindle morphology. According to flow cytometry data, isolated cells from DP-MSCs expressed MSCs markers. A comparison of herbal extracts' concentrations revealed that 500 µg/ml was toxic to dental pulp stem cells, a guide to the toxic dose for DP-MSCs. The P.guajava bore low toxicity and increased dental pulp stem cell viability in comparison to the other two herbal extracts. The hydro-alcoholic extracts of E. Angustifolia, H. perforatum, and P. guajava were efficient in DP-MSCs viability, and therefore were concluded to be useful in maintaining structural and functional cell viability. It was also concluded that the co-culture of stem cells with herbal elements could stimulate endogenous factors to enhance the proliferation and viability of MSCs.


Subject(s)
Hypericum , Mesenchymal Stem Cells , Psidium , Cell Differentiation , Cell Proliferation , Cells, Cultured , Dental Pulp , Humans , Hypericum/chemistry , Plant Extracts/pharmacology
11.
Alcohol ; 96: 63-71, 2021 11.
Article in English | MEDLINE | ID: mdl-34461247

ABSTRACT

BACKGROUND: Stressful conditions increase alcohol consumption in men. Clinical studies link disruption of the neuroendocrine stress system with alcoholism, but the effect of alcohol in a stress condition on male fertility is still relatively poorly understood. This project was undertaken to evaluate the effect of sub-chronic alcohol in a stress condition on male fertility in a rat model. METHODS: Male Sprague-Dawley rats were randomly divided into a control group, a stress group that was exposed to restraint stress, an ethanol group that was injected with ethanol daily, and a stress + ethanol group that was injected with ethanol daily and was exposed to restraint stress, simultaneously. Furthermore, testis tissue was evaluated histomorphometrically and immunohistochemically for apoptosis using a TUNEL assay after 12 days. Epididymis sperm analysis was done. Blood cortisol and testosterone were measured and expression of hypothalamic kisspeptin (Kiss1), RFRP-3, and MC4R mRNA were evaluated. RESULTS: Ethanol exposure during restraint stress did not alter body weight. Ethanol exposure decreased the cellular diameter and area, and stress increased the cellular diameter and area, in comparison with the control group. In the stress group, in comparison with the other groups, the number of seminiferous tubules decreased and the numerical density of seminiferous tubules increased. In addition, ethanol exposure and/or stress reduced semen analysis parameters (sperm viability and motility), but did not change serum testosterone concentrations. Apoptosis increased in spermatogonia with ethanol exposure, but spermatocytes were not affected. Our data present the novel finding that ethanol and stress reduced hypothalamic Kiss1 mRNA expression, while ethanol exposure decreased hypothalamic RFRP-3 and MC4R mRNA expression. CONCLUSIONS: Ethanol decreased cortisol hormone level during the restraint stress condition and attenuated hypothalamic reproductive-related gene expressions. Therefore, ethanol exposure may induce reduction of sperm viability, increased sperm mortality, and increased apoptosis, with long-term effects, and may induce permanent male subfertility.


Subject(s)
Ethanol , Infertility, Male , Stress, Psychological , Testis , Animals , Apoptosis , Ethanol/toxicity , Infertility, Male/chemically induced , Kisspeptins , Male , Rats , Rats, Sprague-Dawley , Receptor, Melanocortin, Type 4 , Sperm Motility , Spermatogenesis , Testosterone
13.
Acta Histochem ; 123(5): 151720, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34083065

ABSTRACT

Transplantation of bone marrow stem cells (BMSCs) has shown to have a vital role in promoting nerve regeneration after SCI. The aim of this study was to investigate the effect of BMSCs transplantation in healing of spinal cord injury (SCI) in mice based on morphologic parameters. Forty two male mice were randomly divided into 3 groups of control with no intervention, experimental SCI without treatment, and experimental SCI transplanted with 2 × 105 BMSCs intravenously. To induce SCI bilaterally, T10 was compressed for 2 min. The animals were sacrificed 3 and 5 weeks after SCI and T7-T11 segments of spinal cord were removed and stained by Giemsa and H&E methods. Stereological assessment estimated the gray and white matter volume, the number of neurons and neuroglia and diameter of central canal. The average amount of gray matter in SCI injury group was significantly lower than control group. An increase in the number of neurons was noted after cell transplantation. The number of neurons in SCI injury group significantly decreased in comparison to the control group. In cell transplantation group, a significant increase in the number of neurons was visible when compared to SCI injury group. The increase in the number of neurons after cell transplantation denotes to the regenerative potential of BMSCs in SCI. These findings can be added to the literature and open a new window when targeting treatment of SCI.


Subject(s)
Bone Marrow Cells/cytology , Mesenchymal Stem Cell Transplantation/methods , Nerve Regeneration , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Spinal Cord/physiopathology , Stem Cells/cytology , Animals , Bone Marrow , Male , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred BALB C , Neuroglia/metabolism , Neurons/metabolism , Regeneration
14.
J Trace Elem Med Biol ; 67: 126793, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34049200

ABSTRACT

Exposure to heavy metals not only impacts on fertility in males, it may also affect the offspring. The aim of the present study was to examine the toxic effects of lead acetate on fertility in male mice and their offspring, and the potential effect of quercetin on mitigating the likely effects. Experimental mice were randomly divided into three groups and administered with (i) distilled water (control); (ii) lead acetate (150 mg/kg BW/day); (iii) lead acetate (150 mg/kg BW/day) with quercetin (75 mg/kg BW/day). Lead acetate administration in male mice adversely affected their fertility through changes in sperm motility, viability, morphology, maturity, membrane integrity, and intracellular reactive oxygen species (P <  0.05). Similar findings were observed in the offspring of the lead-treated male mice. Early embryonic development and implantation rate were also adversely influenced in both the sires and offspring when male mice were treated with lead acetate (P <  0.05). The data demonstrated that down-regulation of Cks2 (CDC28 protein kinase regulatory subunit-2) in sperm had an association with early embryonic development in lead acetate treated group. In conclusion, lead acetate administration adversely impacted on the fertility of the male mice and their male offspring fertility; on the other hand, paternal quercetin co-administration somewhat ameliorated the adverse effects of lead on male mice and their offspring.


Subject(s)
Organometallic Compounds/toxicity , Quercetin , Sperm Motility , Acetates , Animals , Female , Lead/toxicity , Male , Mice , Pregnancy , Quercetin/pharmacology , Reproduction
15.
Exp Eye Res ; 205: 108528, 2021 04.
Article in English | MEDLINE | ID: mdl-33662356

ABSTRACT

Human retinal pigmented epithelium (RPE) can undergo an uncontrolled proliferation in some disorders such as retinal detachment associated with proliferative vitreoretinopathy (PVR). The present study was conducted to evaluate the effect of the conditioned medium secreted by human Wharton's jelly mesenchymal stem cells (WJMSCs-CM) on the proliferation and apoptosis gene expression of the RPE. WJMSCs-CM was collected from WJMSCs after two periods of 24-h and 9-h culture in serum-free medium. RPE cells were cultured in WJMSCs-CM versus serum-deprived media for 24 h. The effect of WJMSCs-CM on RPE cell proliferation was determined using the MTT assay. Relative expression of apoptotic genes (Bcl2, Bax, and IL-1B) was also assessed by real-time PCR. MTT assay demonstrated that RPE cell viability was reduced significantly in WJMSCs-CM treated RPE cells compared to those cultured in serum-deprived medium (64.23 ± 2.44 vs 100.10 ± 5.68; P = 0.006). Moreover, the expression of anti-apoptotic Bcl2 was significantly decreased in WJMSCs-CM compared to serum-deprived medium (0.52 ± 0.06 in WJMSCs-CM vs 1.02 ± 0.2 in serum-free treatment; P = 0.03), while the expression of pro-apoptotic biomarkers of Bax and IL-1B was not significantly different between the two treatments. The represented data showed that WJMSCs-CM can induce apoptosis in RPE cells in vitro through activating apoptosis pathways. This proof-of-the-concept study provides basic evidence for the possible effect of WJMSCs-CM on preventing PVR.


Subject(s)
Culture Media, Conditioned/pharmacology , Interleukin-1beta/genetics , Mesenchymal Stem Cells/cytology , Proto-Oncogene Proteins c-bcl-2/genetics , Retinal Pigment Epithelium/drug effects , Wharton Jelly/cytology , bcl-2-Associated X Protein/genetics , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Female , Flow Cytometry , Gene Expression/physiology , Humans , Real-Time Polymerase Chain Reaction , Retinal Pigment Epithelium/metabolism
17.
Biol Trace Elem Res ; 199(9): 3371-3381, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33107017

ABSTRACT

Exposure to environmental pollutants tightly impacts on the male fertility. In the present study, we examined the toxic effects of lead acetate (Pb) on testicular structure and the possible effect of quercetin on mitigating these effects. The apoptotic changes in the testes were also studied by the TUNEL assay and changes in apoptosis-related gene (Bax, Bcl-2, and caspase-3) expression. Twenty-one male mice were randomly divided into 3 groups of control, Pb, and lead acetate + quercetin. Testicular weight, both absolute and relative, was higher in Pb-exposed mice in comparison with the control and Pb-quercetin groups. The increase in size of testis was related to the lumen and connective tissue in this group. Lead acetate induced different patterns in testicular cell number; as spermatogonia, spermatocyte, and Sertoli cells number did not affect in lead acetate exposed group, while total number of round spermatids and long spermatids significantly reduced. In addition, Bcl-2 expression was downregulated, and Bax expression was upregulated in Pb-treated group in comparison with the control and Pb + quercetin groups. The TUNEL assay revealed that the number of apoptotic cells in Pb-treated group were increaed significantley in comparison to other groups. In conclusion, Pb administration adversely impacted on the cellular organization and activation of the apoptotic pathways in the testis; on the other hand, quercetin co-administration with lead partially ameliorated these adverse effects.


Subject(s)
Quercetin , Testis , Acetates/pharmacology , Animals , Apoptosis , Lead/toxicity , Male , Mice , Quercetin/pharmacology
18.
Cell Tissue Res ; 383(2): 765-779, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33128624

ABSTRACT

Despite the high regenerative capacity of skeletal muscle, volumetric muscle loss (VML) is an irrecoverable injury. One therapeutic approach is the implantation of engineered biologic scaffolds enriched with stem cells. The objective of this study is to investigate the synergistic effect of high-intensity interval training (HIIT) and stem cell transplantation with an amniotic membrane scaffold on innervation, vascularization and muscle function after VML injury. A VML injury was surgically created in the tibialis anterior (TA) muscle in rats. The animals were randomly assigned to three groups: untreated negative control group (untreated), decellularized human amniotic membrane bio-scaffold group (dHAM) and dHAM seeded with adipose-derived stem cells, which differentiate into skeletal muscle cells (dHAM-ADSCs). Then, each group was divided into sedentary and HIIT subgroups. The exercise training protocol consisted of treadmill running for 8 weeks. The animals underwent in vivo functional muscle tests to evaluate maximal isometric contractile force. Regenerated TA muscles were harvested for molecular analyses and explanted tissues were analyzed with histological methods. The main finding was that HIIT promoted muscle regeneration, innervation and vascularization in regenerated areas in HIIT treatment subgroups, especially in the dHAM-ADSC subgroup. In parallel with innervation, maximal isometric force also increased in vivo. HIIT upregulated neurotrophic factor gene expression in skeletal muscle. The amniotic membrane bio-scaffold seeded with differentiated ADSC, in conjunction with exercise training, improved vascular perfusion and innervation and enhanced the functional and morphological healing process after VML injury. The implications of these findings are of potential importance for future efforts to develop engineered biological scaffolds and for the use of interval training programs in rehabilitation after VML injury.


Subject(s)
Amnion/physiology , High-Intensity Interval Training , Muscle, Skeletal/injuries , Muscular Diseases/rehabilitation , Muscular Diseases/therapy , Physical Conditioning, Animal , Stem Cell Transplantation , Tissue Scaffolds/chemistry , Adipose Tissue/cytology , Animals , Cell Shape , Disease Models, Animal , Male , Muscle, Skeletal/pathology , Muscular Diseases/pathology , Myosin Heavy Chains/metabolism , Rats, Wistar , Stem Cells/cytology , Synaptophysin/metabolism
19.
Mult Scler Relat Disord ; 47: 102625, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33227631

ABSTRACT

BACKGROUND: The aim of this study was to identify and compare the characteristics of retinal nerve layers using spectral domain-optical coherence tomography (SD-OCT) in neuromyelitis optica spectrum disorder (NMOSD), relapsing-remitting multiple sclerosis (RRMS) and healthy controls (HCs). METHODS: It is a cross-sectional population-based study in Isfahan, Iran. We enrolled 98 participants including 45 NMOSD patients (90 eyes), 35 RRMS patients (70 eyes) and 18 HCs (36 eyes). Evaluation criteria were thickness of different sectors in peripapillary retinal nerve fiber layer (pRNFL) and intra-retinal layers around the macula. History of previous optic neuritis (ON) was obtained through chart review and medical record. RESULTS: Without considering ON, total macular, ganglion cell layer (GCL) and pRNFL were significantly thinner in both groups of patients compared to HCs. On macular examination, GCL and total macular thickness were significantly thinner than HCs in all NMOSD and RRMS eyes with and without history of ON. While there was no significant difference between MS-ON and MS without a history of ON in the macular measures, the reduction in total macular and GCL thickness was significantly greater in NMOSD-ON compared to NMOSD without a history of ON. Also in NMOSD-ON eyes, the RNFL, GCL, IPL and GCIPL layers were significantly thinner than that of MS-ON. On the other hand, the pRNFL study showed significant thinning of all quadrants in the RRMS and NMOSD groups relative to HCs. While the decrease of pRNFL thickness in the eyes of NMOSD-ON and MS with and without a previous history of ON was significantly greater than that of HCs, no difference was observed between NMOSD without ON and HCs. In addition, in NMOSD patients, pRNFL was significantly thinner in eyes with history of ON compared to non ON-eyes. Furthermore, in patients with a history of ON, reduction in all sectors of pRNFl (except in T) was significantly greater in NMOSD compared to MS patients. CONCLUSION: Our findings showed that although macular and retinal damage occurred in both NMOSD and RRMS patients without significant differences, the severity of injury in eyes with history of ON was significantly higher in NMOSD compared to MS patients, that could be considered as a marker to distinguish them. In addition, our results confirmed the absence of subclinical optic nerve involvement in NMOSD unlike MS patients.


Subject(s)
Multiple Sclerosis , Neuromyelitis Optica , Cross-Sectional Studies , Humans , Iran , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/epidemiology , Neuromyelitis Optica/diagnostic imaging , Neuromyelitis Optica/epidemiology , Retinal Ganglion Cells , Tomography, Optical Coherence
20.
Stem Cells Int ; 2020: 8849537, 2020.
Article in English | MEDLINE | ID: mdl-33204278

ABSTRACT

Uterine fibrosis is an acquired disorder leading to menstrual irregularities, implantation impairment, and abortion. Mesenchymal stromal cells (MSCs) have antifibrotic properties through chemokine secretion. MSC-conditioned media (MSC-CM) contain paracrine components-exosomes-with a great potential for repairing damaged tissue or preventing fibrosis. The main goal of this study was to evaluate the preventive effects of bone marrow-derived MSC-CM (BM-MSC-CM) on uterine fibrosis after uterine curettage in rabbits. This study included 12 female rabbits (24 uterine horns in total). Excised uteri of each of the 12 female rabbits were randomly divided into four groups of intact negative control, curettage positive control, BM-MSC injection, and BM-MSC-CM injection in the way that two corresponding uteri from a rabbit were allocated to different groups. The MSC-CM were collected from cultivated BM-MSCs 48 hours after having been washed three times and replaced in serum-free media. Through a surgical approach, the caudal parts of the uteri were submitted to traumatic endometrial curettage, except for the intact negative uteri. After suturing the uterine walls, BM-MSCs or BM-MSC-CM were injected in the curettage site. Endometrial regeneration was histologically evaluated 30 days after treatment. Based on the evaluation of histomorphometric indices, curettage with or without preventive injections increased the growth of endometrial layers. However, the amount of fibrotic tissue in the CM and the BM-MSC injection groups was the same as the normal control groups, and all were less than the curettage group. A single injection of CM of MSCs after 30 days prevented the fibrotic tissue formation induced by curettage in endometrial layers of rabbits. Injecting BM-MSC-CM immediately after curettage prevented and reduced the uterine fibrosis similar to BM-MSCs in a rabbit model.

SELECTION OF CITATIONS
SEARCH DETAIL
...