Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Future Microbiol ; 19: 21-31, 2024 01.
Article in English | MEDLINE | ID: mdl-38294294

ABSTRACT

Aims: Persistent cells are primarily responsible for developing antibiotic resistance and the recurrence of Pseudomonas aeruginosa. This study investigated the possible role of GNAT toxin in persistence. Materials & methods: P. aeruginosa was exposed to five MIC concentrations of ciprofloxacin. The expression levels of target genes were assessed. The GNAT/HTH system was bioinformatically studied, and an inhibitory peptide was designed to disrupt this system. Results: Ciprofloxacin can induce bacterial persistence. There was a significant increase in the expression of the GNAT toxin during the persistence state. A structural study of the GNAT/HTH system determined that an inhibitory peptide could be designed to block this system effectively. Conclusion: The GNAT/HTH system shows promise as a novel therapeutic target for combating P. aeruginosa infections.


Antibiotics are used to treat infections caused by bacteria. Over time, some of these infections have become more difficult to treat. This is because the bacteria can slow their growth and tolerate the antibiotic, known as persistence. It is important to find new ways to treat infections caused by persistent bacteria. This study researched a toxin­antitoxin system, called GNAT/HTH, that may play a role in bacterial persistence. This system could be a target for new antibiotics.


Subject(s)
Bacterial Toxins , Pseudomonas Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Pseudomonas aeruginosa , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Ciprofloxacin/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Peptides/pharmacology , Microbial Sensitivity Tests
2.
Iran J Basic Med Sci ; 23(10): 1323-1327, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33149865

ABSTRACT

OBJECTIVES: Human gastrointestinal tract harbors a variety of bacteria with vital roles in human health. Bacteroides fragilis is considered one of the dominant constituents of gut microflora which can act as an opportunistic pathogen leading to various diseases, including colon cancer, diarrhea, uterine and intrathecal abscesses, septicemia, and pelvic inflammation. In this study, multiple locus variable number of tandem repeats analysis (MLVA) was performed to genetically differentiate 50 B. fragilis isolates. MATERIALS AND METHODS: Eight suitable tandem repeats (TRs) were selected by bioinformatics tools and were then subjected to PCR amplification using specific primers. Finally, MLVA profiles were clustered using BioNumerics 7.6 software package. RESULTS: All VNTR loci were detected in all isolates using the PCR method. Overall, B. fragilis isolates were differentiated into 27 distinct MLVA types. The highest diversity index was allocated to TR1, TR2, TR5, TR6, and TR8; with this taken into account, strain type 14 was the most prevalent with 12 strains belonging to this type. Clustering revealed three major clusters of A, B, and C. With regards to the pathogenicity of B. fragilis and the outcomes of infections related to this microorganism, it is imperative to study this microorganism isolated from both patients and healthy individuals. CONCLUSION: This study aimed at evaluating the efficiency of MLVA for the genetic differentiation of B. fragilis. The results of this study indicate the promising efficiency of MLVA typing for cluster detection of this bacterium.

SELECTION OF CITATIONS
SEARCH DETAIL
...