Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Enzymol ; 696: 85-107, 2024.
Article in English | MEDLINE | ID: mdl-38658090

ABSTRACT

Fluorinated compounds, whether naturally occurring or from anthropogenic origin, have been extensively exploited in the last century. Degradation of these compounds by physical or biochemical processes is expected to result in the release of fluoride. Several fluoride detection mechanisms have been previously described. However, most of these methods are not compatible with high- and ultrahigh-throughput screening technologies, lack the ability to real-time monitor the increase of fluoride concentration in solution, or rely on costly reagents (such as cell-free expression systems). Our group recently developed "FluorMango" as the first completely RNA-based and direct fluoride-specific fluorogenic biosensor. To do so, we merged and engineered the Mango-III light-up RNA aptamer and the fluoride-specific aptamer derived from a riboswitch, crcB. In this chapter, we explain how this RNA-based biosensor can be produced in large scale before providing examples of how it can be used to quantitatively detect (end-point measurement) or monitor in real-time fluoride release in complex biological systems by translating it into measurable fluorescent signal.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Fluorescent Dyes , Fluorides , Biosensing Techniques/methods , Fluorides/analysis , Fluorides/chemistry , Aptamers, Nucleotide/chemistry , Fluorescent Dyes/chemistry , Riboswitch , RNA/analysis
2.
J Clin Immunol ; 42(3): 559-571, 2022 04.
Article in English | MEDLINE | ID: mdl-35000057

ABSTRACT

PURPOSE: X-linked inhibitor of apoptosis protein (XIAP) deficiency, also known as the X-linked lymphoproliferative syndrome of type 2 (XLP-2), is a rare immunodeficiency characterized by recurrent hemophagocytic lymphohistiocytosis, splenomegaly, and inflammatory bowel disease. Variants in XIAP including missense, non-sense, frameshift, and deletions of coding exons have been reported to cause XIAP deficiency. We studied three young boys with immunodeficiency displaying XLP-2-like clinical features. No genetic variation in the coding exons of XIAP was identified by whole-exome sequencing (WES), although the patients exhibited a complete loss of XIAP expression. METHODS: Targeted next-generation sequencing (NGS) of the entire locus of XIAP was performed on DNA samples from the three patients. Molecular investigations were assessed by gene reporter expression assays in HEK cells and CRISPR-Cas9 genome editing in primary T cells. RESULTS: NGS of XIAP identified three distinct non-coding deletions in the patients that were predicted to be driven by repetitive DNA sequences. These deletions share a common region of 839 bp that encompassed the first non-coding exon of XIAP and contained regulatory elements and marks specific of an active promoter. Moreover, we showed that among the 839 bp, the exon was transcriptionally active. Finally, deletion of the exon by CRISPR-Cas9 in primary cells reduced XIAP protein expression. CONCLUSIONS: These results identify a key promoter sequence contained in the first non-coding exon of XIAP. Importantly, this study highlights that sequencing of the non-coding exons that are not currently captured by WES should be considered in the genetic diagnosis when no variation is found in coding exons.


Subject(s)
Genetic Diseases, X-Linked , Lymphoproliferative Disorders , Genetic Diseases, X-Linked/diagnosis , Genetic Diseases, X-Linked/genetics , Germ Cells/metabolism , Humans , Lymphoproliferative Disorders/diagnosis , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/metabolism , Male , X-Linked Inhibitor of Apoptosis Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...